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Theoretical Modeling of Impulsive Tensile
Response
of Curved-Fibers Composites

Dr.Bassam H. Habib
Al-Mansour University College

ABSTRACT l

A modeling procedure is proposed to determine
| impulsive tensile response of a flexible composite of
polymer base (resin) and sine-shaped glass fibers. A
certain elastic model is adopted and developed in order
to determine important mechanical parameters to be
used in impulsive response determination in the present
procedure.
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NOTATION

Ox,0y Stress } In x- and y- axis respec tively.

&, & Strain

Ty ¥y Shear—stress and - strain rospectively.

L,T Longitudinal and transverse fiber coordinates
respectively.

X,Y Composite general coordinates.

(0] Angle between

€p Fiber braking strain.

€L Longitudinal fiber strain in the (L-T) coordinates.

g, Transformed longitudinal fiber strain [in the (X-Y)
coordinates ].

- €1 Averaged fiber-longitudinal strain along curved fiber.

vy Effective Poisson’s ratio ( curved fibers com posite ).

Sij Composite compliance in fiber coordinates (L-T).

S, Transformed composite compliance from (L-T)to

( X-Y ) coordinates.

S5 Averaged compliance for curved-fibers composite.
Ex . Composite longitudinal Young’s modulus ( straight
fibers ). '

E’x  Composite effective longitudinal Young’s modulus
( curved fibers ). '
E Strain energy.
P Maximum impulsive loading on com posite specimen.
W Falling mass weight in impulsive loading test.
L Composite specimen length.
A Composite specimen cross sectional area.
E, A constant Young’s modulus value.
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1. Introduction: Mechanical properties of composites depend
basically on mechanical properties of both matrix resin and
fibers materials, volumetric ratios of fibers, the status of
fibers, i.e. continuous”, chopped?, particle like, woven® for
example. In many applications it is required to develop
composites that in addition to be flexible, are capable of
withstand high amounts of stresses with considerable
resistance to fatigue fracture®. These kinds of composites
exhibit low stiffness under relatively low stresses and high
stiffness and strength under higher applied stresses.
Straight-fibers composites cannot be regarded as flexible
composites because of the low extensibility of straight fibers
in spite of the high ductility of matrix materials that may be
used.

A convenient way of achieving flexible composites that can
bear high amounts of loadings is to make use of fibers
geometrical shape that may by changed in parameters as the
loading changes in magnitude.

In this study, sine shaped curved fibers are considered as
reinforcing agents of composites of elastomeric polymer
matrix that is characterized by high ductility.

The gradual straightening of curved fibers with external
tensile loading may be optimized yielding a composite that
shows enhanced stiffness with increasing deformation.

In this work, an elastic model proposed by Chou and
Takahashi® is adopted and expanded to generate certain
data that are to be used here in developing the impulsive
response modeling.

This elastic model is expanded here to determine the
Poisson's ratio and strain energy during composite tensile
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deformation since these two quantities are of importance in
further calculations. |

In this elastic model, the composite is considered to be
exposed to series of strain incremental steps (tensile cycles),
after each tensile cycle current (or instantaneous) values of
concerned parameters are determined. This process
continues until a breaking point is reached indicating the
failure of the composite. This failure is regarded when the
current tensile strain (g,) exceeds a certain breaking value
(&)

Then the impulsive tensile loading is dealt with via an
approach proposed in this work, where use is made of some
data obtained from the elastic model mentioned above.

2. General Overview of the Elastic Model: Iso-phase
configuration of the sine-shaped fibers is assumed
throughout the composite where they extend along the X-axis
as illustrated in Fig.(1). As shown in this figure, fiber
coordinates (L,T) and composite coordinates (or general
coordinates) (X,Y) make an angle (®) with respect to each
other at any point throughout the composite (the situation is
assumed symmetric along the Z-axis).

The sine-shaped fiber is characterized by it's wavelength (1)
and amplitude (a) as illustrated in Fig.(2).

In this model, coordinates transformation relations (i.e.
transformation matrix) ©% are employed to achieve
transitions between local (L, T)- and general (X, Y)-
coordinates for the elastic compliance coefficients, while
averaging processes of those elastic compliances along fiber
wavelength are performed to represent the curvature of
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fibers effectively. This yields the averaged strain-stress
relation:

CY (NN
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. 1
where S, :—/{J’E;dx is the averaged compliance of the
0

* curved-fibers composite, and Sij ESU (9) is the

transformed compliance (S;) from (L,T) to the (X,Y)-system.
Here, the effective Young's modulus for the longitudinal
stress-strain response is defined as:

* * ' '
— ' 2
E:=1/S @
Coordinates transformation and averaging processes are also

employed to obtain an expression for the average strain (5 L )
along curved fiber length as:

3Z=%!de 3),
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here, £, = £,(0), is the longitudinal fiber strain (g,)

transformed to the (X,Y) coordmate system. |

The averaged fiber strain (g.") is to be compared with a

breaking value (g;) to check for composite failure.

The calculations of this model provide current values of some

important mechanical parameters concerning the composite

specimen during a stepwise longitudinal tensile process along

x-axes. Among those parameters are: longitudinal stress (c,),

effective Young's modulus (E, "), elastic comphances before

averaging (S;;;) and after averagmg (Sus )s and the average

strain along fibers length (€, .

The calculation process is terminated when gL exceeds €
indicating the failure of the composite. '

3. Impulsive Loading: The impulsive loading situation
considered is shown in Fig(3), where a certain weight (W)
falls through a height (h) along a hinged composite specimen
(of curved fibers) of an initial length (L). The falling mass
impacts on the tipped end of the specimen leading to
impulsive tensile loading due to which the specimen
experiences a maximum strain (elongation) and
correspondingly, a maximum stress (tension)”,

A certain procedure is proposed here to determine the
impulsive response of this non-linear elastic behavior
composite specimen. In this procedure it is necessary first to
determine current values of both the strain energy (i.e.
energy stored due to elastic deformation) and the Poisson's
ratio of the specimen during its incremental elongation
calculation in the elastic mode mentioned previously.
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3.1. Strain _Energy and Effective Poisson's Ratio
Determination B

Considering applied longitudinal stress in the X-direction,
the strain energy (E) is

Ey
defined by the integration E = I Oy dEy , this integration
0
is determined numerically using trapezoidal rule after each
tensile cycle (step).
. Concerning Poisson's ratio, this ratio may be defined
effectively for sine-shaped fibers composite from eq.(1) as:

ny* =- SIZ* / Sll* (4)

The average compliance (S“*) was formulated in Ref.(4).
Making use of some results in that reference, the following
expression for (S;, ) is concluded here as:

*

c/2 ‘
Sip =8, +(T_;;?)3W(Sn =28, +8y, —S4) — )

where, c=(2na/A)* and Sijs are elastic compliances for
straight-fibers condition (i.e. for a given 0, with the tension
stress applied parallel to the straight fibers which indicate a
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principle axes). The coefficients S;;; are related to engineering
constants of the composite for straight-fibers condition.

3.2. Proposed Procedure for Impulsive Loading Response
Determination '

For linear materials (i.e. those of constant Young's moduli),
the maximum loading (P) the specimen experiences for the
situation shown in Fig.(3) is determined by the known
equation’ 8),

{ 2hAEv} -
P=w|1+ : (6)

WL

where, E,: a constant Young's modulus, A: specimen initial
cross sectional area.

This equation is not suitable for composites which usually are
characterized by non-linear stress-strain relations (variable
Young's moduli).

For our polymer-based composite of curved fibers, a certain
procedure is proposed that makes use of some results
obtained from fthe elastic model mentioned in sec (2).

Among the many parameters provided by that model only
four are directly related to impulsive loading determinations
which are: strain (g,), stress (o), strain energy (E), and the
equivalent mass (M) which is the amount of mass associated
to a given stress, given as: M=c,* A / g, where g is the
acceleration of gravity and A is the cross sectional area of the
composite specimen. Here use is made of the effective
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Poisson's ratio [eq.(4)] in determining the current values of
(A) during each tensile cycle in the elastic model. A complete
set of the above four parameters is obtained when composite
breaking point [denoted by symbol (b)] is reached, at which
the elastic calculations cease and the impulsive calculations
may be performed.

To make an impulsive test, given values of falling mass (Mo)
and height of fall (h) are provided to the impulsive
calculation model in which two parts of energy are
determined, namely, static (Es) and impulsive (Ep) energies.
The static part is due to the effect of mass-existence only, it is
determined by performing an interpolation process to find
the strain energy corresponding to the glven mass (Mo). This
may be illustrated by Fig.(4).

The static energy (Es) is determined as [see Fig.(4)]:

E.  —FE.
E.=E +— "L (M -M,
S i M Ml( 0 :).

i+l

While the impulsive part, which is due to the mass fall
through the given height (h) is simply found as: Ep=Mo.g.h .
Hence the total amount of energy provided to the specimen in
this process is: Eo=Es+Ep.

Maximum stress (Opa) and strain (gy,,) correspond to
energy (Eo) may be determined by performing the
interpolation again making use of the data provided by the
elastic model. This is illustrated in Fig.(5).
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The maximum stress (for example) is determined as [see
Fig.(5)]:

O —0;
Crax =0 + E. _F (E, - E)
A similar relation may be established for the maximum
strain.
Different values of mass and height of fall may be chosen and
the maximum values of stresses and strains examined by the
specimen may be found. When sufficient magnitudes of mass
and/or height are given, the total energy (Eo) may exceed the
breaking value (Eb) indicating the failure of the specimen.

4. Results and Discussion

The specimen under consideration in the present calculations
is a ‘composite of a polymer resin [Polybutylene
terephthalate (PBT)] with sine-shaped glass fibers.

The data adopted for PBT and glass are as follows'":

EL(GPa) E[‘(GPa) GLT(GPa) VLT VTL SbOA)
PBT 2.156 0.77 0.4 50-300
Glass 72.52 29.7 0.22 4
where, E;: Longitudinal Young's modulus (along fiber's
length)
Er: Transverse Young's modulus (transverse to fiber's
length)
Gy r: Shear modulus, v: Poisson's ratio, €,: Breaking
strain.
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Attention will be paid for the results of impulsive loading.
Figs. (6-a, and -b) show maximum longitudinal strains and
stresses respectively reached by the specimen due to impact
of a 30 Kg. mass falling from different heights. Two
specimens are considered with different a/A ratios: 0.2 and
0.1, both have the same volumetric ratio (Vf ). Fig.(6-a)
shows that the specimen of higher a/A is more flexible, i.e.,
exhibits more strains at a given falling height indicating the
effect of fibers curvature on composite flexibility. Also it is
noted that the composite of higher a/A fails at higher heights.
Fig.(6-b) shows the corresponding stresses induced in those
two specimens as functions of height of fall (h). Comparing
Figs.(6-a) and (6-b) it is concluded that higher a/A leads to
more stability in impulsive loading, where for higher a/A we
have higher strains and correspondingly lower stresses.
However, the composite of higher a/A may eventually bear
more stresses due to it's failure at much higher values of
falling heights (h).Hence it is concluded that both flexibility
and strength of the composite are proportional to fiber's
curvature, i.e. the ratio a/A.

The effect of the falling mass value is shown in Fig.(7) where
two masses are considered: 30 and 25 Kg. impacting a
specimen of a/A=0.2 and Vf=30%. It is shown that the
resulted strains are lower for the lower mass as expected,
which means naturally that the corresponding stresses
behave in a similar manner.

The rule played by fibers volumetric ratio is presented in
Figs.(8-a and -b) in which a 30 Kg. mass impacts two
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specimens of different Vf (Vf=30% and 20%), both have the
same a/A ratio. It is noted from those two figures that higher
Vf leads to lower strains and correspondmgly higher stresses
at a given height of fall. Also it is noted that the composite of
higher Vf can bear higher stresses and strains before failure.
Hence we get a stiffer composite for a higher volumetric ratio
of fibers.

As a conclusion, increasing fibers curvature (a/A) increases
both flexibility and strength of the composite, while
increasing the fibers volumetric ratio increases its stiffness.
Unfortunately, published data concerning impulsive loading
of curved-fibers composites couldn’t be found for
comparison purposes. Hence, static loading situation is
considered and a comparison is made with results reported
in Ref.(2), where tensile strength of a unidirectional
epoxy/Kevlar composite of straight Kevlar fibers was
measured for different volumetric ratio (Vf) ranging from
26% to 73%.

Volumetric ratio of 40% was considered for example, where
the measured tensile strength of the composite specimen was
0.93 GPa taken as an average of nine samples, while the
calculated value using rule of mixture (ROM) was 1.22
GPa®,

The ultimate tensile strain is expected to be the braking
strain of the straight Kevlar fibers (~ 3%).

Here, the developed elastic model mentioned in sec.(2) was
applied on the experimental case described above. Straight
fibers (a/A=0) where considered first. The model calculations
resulted in a maximum tensile stress (o,) of 1.8 GPa and a
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maximum tensile strain (g,) of 3.5%. It is believed that this
discrepancy in (o,) between experimental and calculated
values is due to the lack of parametric material data
concerning the exact types of epoxy and Kevlar materials
employed in Ref.(2). Calculations on sine-shaped fibers
composite were performed to demonstrate the influence of
fiber curvature on tensile strength and breaking strain of
composite specimen.

Tacking a/A-ratio of (0.1), the maximum calculated tensile
stress and strain were respectively (2GPa) and (12%), while
for a/A=0.2, they were respectively (2.3GPa) and (35%).

This comparison shows that composites of curved fibers are
. capable of bearing higher strains and consequently, higher
stresses than straight fibers composites. Accordingly, it is
expected that curved fibers composites still have the same
superiority in impulsive loading condition compared with
straight-fibers composites.
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_ Isg-phase configuration of sinusoidal fibers imbedded within
a matrix material.
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A schematic representation of a sine fiber showing its
wavelength (1) and amplitude (a).

(43)



2006 ( gl ) sl

L

AN

w

N

- - ——

Fi

(3

Ll

(b)

A schematic illustration of tensile impact loading
(a): Before impact , (b):After impact.
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E (J) | M (Kg.)
El M1
E2 M2

... | FEi Mi See
ES . Mo(given)
(determined) Eitl | Mi+1

Eb Mb
Fig.(4)

~ A schematic illustration of determining strain energy (Es)
that corresponds to a given mass (Mo) via interpolation
process on data obtained from elastic model.
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€i+1 Oi+1 Ei+1
€p Oy Eb
Fig. (5)

An illustration of determining o,,,, and g, corresponding to
the total energy (Eo) via interpolation process.

(46)

o=



2006 ( gkl ) sul | Jsmaiall Uas

04
0.3 -
0.2
0.1 ‘
—a[]=0.1
0
0 10 20 30 40 50

Height (cm)

Fig.(6-a)
Tensile strain versus height of fall for two values of a/A.
The falling mass = 30 Kg. and the fibers Vf ratio = 30%.
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Fig.(6-b)

Tensile stresses corresponding to strains of Fig. (6-a).
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— M=30 Kg.

0 20 40 60
Height (cm)

Fig. (7
Tensile strains versus height of fall for two values of falling
mass. The composite specimen is of a/A= 0.2 and Vf= 30%.
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0.1 - —o—Vi= 30%
— V= 20%
0 10 20 30 40 50
Height (crp)
Fig. (8-a)

Tensile strain versus height of fall for two values of V¥,
The falling mass = 30 Kg. and a/A ratio = 0.2.
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Tensile stresses corresponding to strains of Fig. (8-a).
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