
 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 83 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

Thread Library to solve process synchronization problem

Dr. Nada A.Z. Abdullah

University of Baghdad

Abstract:

Most programs needed to be written in a way that are aware of the existence of
each other and which can co-operate with each other towards some common
goal. The standard solution to this problem is interprocess communication
mechanisms (IPC). Any IPC mechanism is chosen, there is still the context
switch overhead to contend with whenever normal processes need to work
together. The way to overcome this is to use the concept of threads. The idea
behind threads is that each process can have its processor time slices shared
between several concurrent threads, each of which also shares the memory
and data structures of the process to which it belongs.

 In this paper a new and simple user level threads library is presented. This
library can be easily used by the programmers to gain the benefits of threads.
As an application a solution to the unbounded buffer problem is implemented
using the developed thread library. C language under Linux Operating system
is used for programming.

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

10 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم Scientific Conference 24-25 Oct.2009 - 84 -
th

1. Introduction

In Linux the main unit of concurrency is the process. In order to switch
between executing one process and the next quite a lot of work is involved.
This context switch overhead is necessary because, in general, Linux needs to
make sure that any pair of processes are protected from interfering with each
other, especially when the processes may not even belong to the same user.

Processes can co-operate with each other towards some common goal. The
standard solution to this problem is interprocess communication mechanisms
(IPC). Using any IPC mechanism there is a context switch overhead to contend
with whenever normal processes need to work together.

The way to overcome this is to use the concept of threads. Threads, like
processes, are a mechanism to allow a program to do more than one thing at a
time. As with processes, threads appear to run concurrently; the Linux kernel
schedules them asynchronously, interrupting each thread from time to time to
give others a chance to execute. Conceptually, a thread exists within a
process. Threads are a finer-grained unit of execution than processes. When
you invoke a program, Linux creates a new process and in that process creates
a single thread, which runs the program sequentially. That thread can create
additional threads; all these threads run the same program in the same
process, but each thread may be executing a different part of the program at
any given time.[1]

The amount of the effort involved in context switching between two co-
operating threads within a single process is much smaller than the effort of
switching between two processes. This is mainly because the threads within a
process are all sharing the same text, data and system memory areas and
structures so that no effort is expended in rearranging these things. Since the
threads are specifically designed to be co-operative and not antagonistic,
nothing needs to be done by the kernel to protect the threads within a single
process from each other. Threads may, therefore, be considered as lightweight
processes; light in the amount of the effort required to context switch between
them when compared to the effort involved with context switching standard
(heavyweight) process.

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 85 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

Threads can generally be implemented in one of two different ways:[2]

 Within the kernel, as a kernel task;
 Within the process itself, as a user space task.

When threads are implemented within the kernel, the scheduling of the threads
can be preemptive, in a similar way to the scheduling of process themselves.
This means that, whatever a thread is doing, when its time is up the kernel will
interrupt it and pass control to the next thread to run. In the case of threads
provided in user space, the implementation is very much simpler, though now
the thread scheduling becomes non-preemptive. This means that a context
switch between threads can only take place when the current thread voluntarily
releases control of the processor itself.

Non-preemptive scheduling is usually avoided in multi-user environments
because it allows one user to hog the processor by refusing to give up control
to allow other users to take a turn. In the case of threads, however, non-
preemptive scheduling does not present this problem as the threads are
supposed to be co-operating on some task, not fighting over the processor.
The only real problem that does occur with user level threads, which can be
avoided by kernel level threads, is with blocking I/O. with a non-preemptive
scheduler, if one of the threads was to block on I/O (waiting for keyboard input,
for instance), then that thread would be unable to release its control of the
processor to allow another thread to run. This would effectively bring all the
threads within that particular process to a halt until the blocked I/O was
complete and control could be transferred. This just means that care must be
taking when using user level threads to ensure that blocking threads on I/O
does not take place.

In this paper an implementation to a new, and simple, user level threads library
that can be used in any program to solve process synchronization.

2. Library Calls

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم - 86 -

The threads library really is simple, especially in terms of the user interface.
Threads are created dynamically at run time, as they are required. This is done
with a call to the new thread () function:

int new-thread(int (*start-addr)(avoid) , int stack-size) where start-addr is a
pointer to a function which will act, for the newly created thread, like the main
() function acts for a process. The stack-size parameter specifies how much
space, in bytes, should be set aside for this thread to use as its stack.

Whenever new-threads () is called, a new thread structure is created and
initialized and added to a circular doubly linked list of threads structures. This
list is used by the thread context switcher (scheduler) to determine which is
the next thread to execute when the current thread gives up its control of the
processor. The first time new-thread () is called, usually from within the main ()
function of a process, the execution of main () itself is suspended and the
thread scheduler started up. Only when all the threads created within a
particular process have terminated is control finally returned to the main ()
function, to the point just after the initial new-thread() call. On all calls to new-
thread(), other than the first, a return is made immediately so that the calling
thread can continue its execution. The return value from new- thread() is 0 on
error (malloc() failure) or 1 on success. The only other function needed to use
the threads library is the call which allows thread to give up its control of the
processor back to the thread scheduler:

int release (void);

Calling this function will cause the thread scheduler to pass execution control
to the next thread in the circular list of thread structures created by new-
thread().

To be on the safe side, we should add a release () to our code anywhere where
it might loop, so that even an infinite loop will not stop the other threads from
being scheduled. Using this criterion, the places that need release ()
statements are: inside the body of each while, for and do loop, after each
program label so that a goto can't cause a loop without a release().

In the situation where two or more threads need to communicate with each
other this can be achieved by the use of variables which are global to the
whole process (and therefore to each of its threads). Communication via global
variables is common with threads, but suffers some- what from being

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 87 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

asynchronous. This means that without setting up some kind of special
arrangement, a data producing thread which writes to a global variable has no
way to know that the data has been read by a data consuming thread when it
needs to replace the current contents of the variable with the next data value.

In order to make it easier to write threads whose communication is
synchronized, the tiny threads library provides a simple communication
mechanism between threads, based on the rendezvous concept. The basic idea
behind a rendezvous is that it doesn't matter which of the two communicating
partners (producer or consumer) arrives at the rendezvous point in its code
first; its execution will be suspended until the other partner arrives at the same
point. At this time, the data is passed between the two threads, the suspended
thread's execution is resumed, and both threads then continue their execution
with the communication guaranteed to have taken place[3]. The threads library
provides three function calls related to the rendezvous mechanism: get-
channel(), send() and receive(). The get channel() calls has the prototype:

int get-channel (int number):

where number is the communication channel number is used, and the return
value is a channel descriptor value will be passed forward into the other
rendezvous related calls (or zero on error).

 This is similar in concept to opening a file except that we use a channel
number instead of a file name, and get a channel descriptor. The way that
channels implemented allows multiple producer and consumers all to share
access to the same channel. In this case, the library will ensure that the
producer's messages are properly queued and that each message can only be
read by one consumer and will then be removed from the channel, in FIFO
order. Having obtained a channel descriptor, messages can be communicated
over the channel with send() and receive().

Int send(int cd, char *buf , int size);

Int receive(int cd, char *buf , int size);

where cd is a channel descriptor returned from a get_channel () call, buf is a
pointer to a buffer from which data will be sent or to which data will be
received, and size is the size of the data to be transferred, in bytes.

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم - 88 -

If matching send() and receive() calls specify different data size then the
smaller of the two will be used. The return values from both the send() and
receive() calls will be the actual number of bytes transferred.

3. Calling C Functions

Every C program starts by executing the function main(). In fact, when you
compile a C program and link it for execution, a system specific piece of code
is bolted onto the front of your program which deals with any command line
parameters and performs a call to the program's main() function. Functions are
called in the same way as subroutines are called in machine code, that is, a
return address is pushed onto the machine stack and then control is
transferred to the start of the called function. When this function terminates,
the return address on the top of the stack is used to get back to the calling
function at the instruction following the subroutine call[4].

In fact, not only is the stack used to store function return addresses, but it is
also used for passing function parameter values and for holding the values of
automatic local variables declared within functions. This means that some care
must be taken not to confuse any values stored on the stack, as any form of
stack corruption can lead to some pretty sticky bugs.

When function is called, any parameter expressions, whose values you will
pass into the function, are first evaluated and their values pushed onto the
stack. Next, a machine code call is made to the function which also results in a
return address being stacked. At the top of the called function, the names of
any parameter variables specified are used to label the appropriate positions
on the stack where the parameter values have already been pushed. In this
way, any parameter values are automatically assigned to their respective
parameter variables.

Once inside the function proper, the value of one of the processor registers
(ebpin fact, which is the extended base pointer register) is also pushed onto
the stack because that register is going to be used as a place holder to be able
to find the return address on the stack when the function terminates. The value
of ebp on entering the function, is pushed right next to the return address and
then the current stack pointer value (pointing to the ebp value just pushed) is
copied into the ebp register, overwriting its previous value, which is now safely
stored on the stack.

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 89 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

4. Thread scheduling

All the threads within a single process share the program and all the global
environment of the process. They only private parts of a thread are the
contents of any significant processor registers and the stack, which it uses
during its execution. This suggests that in order to switch contexts between
two threads within a single process, all that is required is to swap the values in
a few processor registers specifically, the program counter (or instruction
register), ebp and the current stack pointer. Each thread has associated with it
a data structure, which is used to save the per thread context when the thread
is not currently running. The data structure has the following layout[3]:

The next and prev fields of the structure are used to form the forward and
backward linkes that tie this structure into the doubly linked, circular list of
structures which form the scheduling loop. The stack field is a pointer to an
array of bytes which is used as the private stack space for this thread, and the
ebp field is used as a temporary store for the contents of the processor ebp
register when the CPU is processing some other thread.

5.Context switching

The first piece of threads library code to look at is the release() function, which
is called by a thread when it wants to pass its control of the CPU on to the next
thread in the scheduling loop. When we examine this code, the variable current
is a pointer to the struct context associated with the currently running thread:

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم - 90 -

The relase () function calls another function (switch-context()) which is
declared to be static so that it cannot be called by any code outside the threads
library file. The switch-context() function consists of a few lines of embedded
assembly code, which are used to allow direct access to specific processor
registers – a level of control not

directly available in standard C. The numbered comments are:

1. If there is only one thread in the scheduling loop then there is no point in
doing a context switch at all. In this case, the release() function just
returns straight away and hence the current thread resumes execution
until the next release() call is encountered.

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 91 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

2. Move current to point to the next thread in the scheduling loop. Then call
switch-context(), passing the old value of current and its new value as
parameters.

3. Inside the switch-context() function there are four instructions in 386
assembly code. All these instructions do is to take the CPU ebp register
contents and store them in the ebp field of the from structure, and then
load the CPU ebp register from the ebp field of the to structure instead.
The switch-context() function then returns.

Thread's code resumes execution by an ordinary return from the release()
function. In fact, as far as any of the threads is concerned, they just call
release() at intervals, which then returns, allowing them to continue. The
threads themselves are unaware of anything unusual happening during the
release() call.

6. Starting New Threads

Starting a new threads just mean creating a struct for the thread and allocating
a block of memory for its stack. These data structures can then be initialized
and added to the scheduling loop to get the opportunity to run[5]. Thread's
stack initialized, as several values need to be hand crafted into the empty stack
before it can be used:

The new-thread() function takes two parameters, the first is the address of the
function where execution of this thread will begin and the second is the size of
the memory block (in bytes) to allocate for stack to the new thread.

new_thread(int(*start_addr) (void),int stack_size)

{ struct context *ptr;

 int esp;

 /* 1 */

 if (!(ptr=(struct context *)malloc(sizeof(struct context))))

 return 0;

 /* 2 */

 if (!(ptr->stack =(char *)malloc(stack_size)))

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم - 92 -

 return 0;

 /* 3 */

 esp = (int)(ptr->stack+(stack_size-4));

 *(int *)esp = (int)exit_thread;

 *(int *)(esp-4) =(int)start_addr;

 *(int *)(esp-8) = esp-4;

 ptr->ebp = esp-8;

 /* 4 */

 if(thread_count++)

 {

 /* 5 */

 ptr->next=current->next;

 ptr->prev=current;

 current->next->prev=ptr;

 current->next=ptr;

 } else

 {

 /* 6 */

 current=ptr->next=ptr->prev=ptr;

 switch_context(&main_thread,current);

 } return 1;

}

 The numbered comments in the code are as follows:

1. Use malloc() to create a struct context for this thread. Check that the
memory allocation was successful and return a zero value on error.

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

 10th Sي اــر العلمــالمؤتم

2. Use malloc() again to allocate a block of memory of the specified size for
the thread's stack. The stack pointer in the new struct context is set to
point to the stack memory. Again, a memory allocation error will cause a
zero to be returned by new-thread().

3. Initialize the stack to the state shown in Figure 1 the pointer to the stack

memory in the struct context points to the lowest numbered address of
the block, wheras the action on the stack is taking place at the high
address end of the block.

4. The next part depends on whether or not this is the first new thread within

the current process. If it is, execution of the main program is suspended
and a context switch to the new thread is performed; otherwise the new
thread is just added to the scheduling loop to await its turn to run.

5. Adding a new thread to an existing scheduler loop is made a little more

complex by the fact that the loop is doubly linked so that a forward and
backward set of pointers need to be set up. A new thread is inserted into
the scheduling loop in such a way that it will automatically be the next
thread to run when the current thread performed a release().

6. No threads are currently running so the scheduling loop needs to be

created and started by a first call to switch-context(). In order to make sure
that the main program is suspended, the switch_context called
main_thread. This structure is not part of the scheduling loop and so the
main program will not be executed again, except by special arrangement,
when there are no more threads left to run.

Figure 1 shows that the ebp element of the struct context associated with the
new thread is set to point into the thread's stack. When a context switch is
made to the new thread, this value is loaded into the CPU ebp register. The
return from the switch_context() function then causes the stack pointer to
point to the same stack location. Performing a stack pop into ebp loads this
register appropriately and also makes the stack pointer point to the thread start
function. An extra twist is required when a thread's start function terminates in
order to remove the thread from the scheduling loop and free its malloc()ed
memory back to the system. These actions are performed by the exit_thread()
function.

cientific Conference 24-25 Oct.2009 2009 تشرين الاول 25-24ر ــاشـلع - 93 -

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم - 94 -

 Figure 1:Data structure set up in new thread

This means that the function is automatically executed when the thread's start
function terminates, using a similar trick to the one which executed the start
function in the first place

The exit_thread() function terminates the thread pointed to by current. The fact
that the exit_thread() function is declared to be static prevent it from being
called from outside the library. The numbered comments are:

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 95 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

1. If current is not the last thread in the scheduling loop, then unlink it from
the scheduler and switch context to the next thread; otherwise, as there
are no more threads to execute, resume execution of the main thread.

2. Take a copy of the pointer to the current thread. Unlink the current
thread from the scheduling loop, then reassign current to point to the
next thread to execute. Now free() the malloc()ed memory associated
with the terminating thread and finally switch_context() from this thread
to the new current thread.

3. It is only necessary to free() the malloc()ed memory associated with the
final thread in the scheduling loop and then switch_context() back to the
main program, to resume its execution.

7. Rendezvous

Two new data structures are used in the implementation of the rendezvous
mechanism. The first (struct message) is used on a per blocked message
channel basis. The second (struct message) is used on a per blocked message
basis.

 These two structures, along with the declaration of struct context and some
global variables, etc., are all supplied in a separate header file, called def.h,
which should be #included at the top of the program[3].

As each channel is created a struct channel ia allocated and added to a linked
list of all the channels within the current process. Whenever an unmatched
send() or receive() is performed on a channel, a struct message is allocated
and entered on to the end of a message queue, hanging off the channel
structure. Whenever a thread is blocked in a rendezvous awaiting a
communication partner, the thread structure is unlinked from the scheduling
loop and linked instead to its message structure. Figure 2 illustrates how the
various structures are interconnected when send() and receive() operations are
pending[6].

The diagram shows the existence of three communication channels in this
example, whose data structures are linked together, with channel list as the
pointer to the head of the list. A send() operation has been performed on
channel 1 and a message structure has been attached to the channel structure.
The context structure for the thread which performed the send() has been
removed from the scheduling loop and attached to the message structure. This
ensures that the thread cannot be run again until a matching receive()

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10ـاشــي العــر العلمـــالمؤتم

operation is performed on the same channel at which time the context
structure will be easy to locate and re-connect to the scheduling loop.

The diagram also shows that a second send() operation has also been
performed by another thread on the same channel and that it, too, is queued on
the channel awaiting the second receive() operation. Communication channel 2
has been created but there are no pending messages queued. Channel 3
shows that a receive() has been performed and that a send() on the channel is
awaited.

Figure 2:structure links created during rendezvous

8.Creating Channel

New communication channels are created with the get_channel() function as
follows:

th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر - 96 -

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 97 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

The get_channel() function returns a channel descriptor given a channel
number as a parameter. If the channel does not already exist, then it will be
created. The numbered comments are:

1. Starting at channel_list, search down the linked list of existing channels
looking to see if the specified channel number already exists. If the
specified number is found in the list then the address of the associated
struct channel is cast to an int value and returned as the channel
descriptor.

2. If the channel number does not already exist, then a new struct channel
is allocated, or a zero is returned on error.

3. After the new struct channel has been successfully created its fields are
initialized and the structure is added to the head of the channel list.
Finally, the address of the new structure is cast to int and returned as
the channel descriptor.

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم - 98 -

9.Send and receive

Once a channel descriptor has been obtained all that remains is to use send()
and receive() to pass messages between threads.

 In fact, as the following code shows, send() and receive() are fully symmetrical
operations so that they both make an internal call to the function rendezvous()
with just an extra flag parameter to specify in which direction the data transfer
should be made:

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 99 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم - 100 -

The send() and receive() function both take three parameters. The first is a
channel descriptor, the second is a memory buffer from which, or to which, the
data transfer will take place, and the third parameter specifies the size of the
data transfer, in bytes. The return value from both functions in the number of
bytes actually transferred. This will be the smaller of the two sizes specified as
the third parameters to the two functions. The numbered comments are:

1. The send() parameters values are passed directly to rendezvous() with an
added fourth parameters value to specify the data transfer direction.

2. The receive() parameter values are passed directly to rendezvous() with
an added fourth parameter value to specify the data transfer direction.

3. Inside rendezvous(), the first test checks to see if there is a
communication partner of the correct type already queued. If there is,
then the partner's struct context needs restoring to the scheduling loop
and the data needs to be copied between the threads before the threads
can continue their execution. If no partner is queued, then the current
thread is removed from the scheduling loop and the communications
request added to the queue of the requests associated with this channel.

4. This code section re-links the threads struct context to the scheduling
loop and increments the count of the number of the threads ready to run.

5. The calculation is performed to determine the number of bytes that will
be transferred. This value is also saved where the communications
partner can get at it on its next turn to run.

6. The data transfer now takes place, making sure to copy the data in the
right direction.

7. If this was the last message queued in the channel, then the message
type flag is reset and the number of bytes transferred is returned to the
caller.

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 101 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

8. In this code a new message is to be queued as no matching partners are
ready yet. A new struct message is allocated and added to the channel
message list. The threads needs to block while waiting for a communication
partner so this code also removes the thread's struct context from the
scheduling loop and stores it under the message structure.
9. The number of runnable threads is decremented and a context switch is

performed to the next thread in the loop. As the newly blocked thread
needs to find a communication partner before it can resume execution,
there should always be other threads to which control can be passed. If
for any reason this proves not to be the case then the context switch
arranges to resume execution of the main thread.

10. The next time this thread gets scheduled will be after the rendezvous has
taken place, when the number of bytes transferred can be recovered and,
after free() ing the used struct message, can be returned.

11. The application (solve Unbounded Buffer problem)

A cooperating process is one that can affect or be affected by other processes
executing in the system. Cooperating processes may either directly share a
logical address space, or be allowed to share data only through files.

The former case is achieved through the use of threads. Concurrent access to
shared data may result in data inconsistency, this requires mechanisms to
allow processes to communicate with each other and to synchronize their
actions.

Produced-consumer problem is a common paradigm for cooperating
processes. A producer process produces information that is consumed by a
consumer process, to allow producer and consumer processes to run
concurrently, we must have available buffer of items that can be filled by the
produced and emptied by the consumer. The producer and consumer must be
synchronized so that the consumer does not try to consume an item that has
not been produced.

The unbounded-buffer produced consumer problem places no practical limit
on the sze of the buffer. The consumer may have to wait for new items, but the
producer can always produce new items.[1]

 As an application to the use of the threads library, the following code
presents a solution to the unbounded buffer problem; the program is
developed as a C program Under Linux Operating system:

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم - 102 -

In the above program, two channels in use with multiple senders and receivers.
Also the program uses one instance of the buffer() function. This solution
dynamically creates more buffer space as it is required and it dynamically
tidies up after itself when the buffer elements are finished with.

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 103 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

12. Conclusion

In this paper an attempt is made to develop a thread library which can be
included and used in any program deals with thread to make the use of thread
easy and simple.

While developing the thread library we realized the following aspects:

1. Creating a new thread is cheaper than creating a process

2. Switching to a different thread within the same process is cheaper than
switching between threads belonging to different processes.

3. Threads within a process are not protected from one another.

4..All threads in a program must run the same executable. A child process, on
the other hand, may run a different executable by calling an exec function.

 5.. An errant thread can harm other threads in the same process because
threads share the same virtual memory space and other resources. For
instance, a wild memory write through an uninitialized pointer in one thread
can corrupt memory visible to another thread. An errant process, on the other
hand, cannot do so because each process has a copy of the program’s
memory space.

6. Copying memory for a new process adds an additional performance
overhead relative to creating a new thread. However, the copy is performed
only when the memory is changed, so the penalty is minimal if the child
process only reads memory.

7. Threads should be used for programs that need fine-grained parallelism. For
example, if a problem can be broken into multiple, nearly identical tasks,
threads may be a good choice. Processes should be used for programs that
need coarser parallelism.

8. Sharing data among threads is trivial because threads share the same
memory. (However, great care must be taken to avoid race conditions, as
described previously.) Sharing data among processes requires the use of IPC
mechanisms.

 Dr. Nada Abdul Zahra ندا عبد الزهرة . د

 10th Scientific Conference 24-25 Oct.2009 2009رين الاول ــ تش25-24ر ـاشــي العــر العلمـــالمؤتم - 104 -

References

[1] P.B.Galvin "Operating System concepts" Fifth edition,Addison-Wesley,1998.

[2] G.Coulouris "Distributed systems" third edition, Addison-Wesley,2001.

[3]Phil Cornes, "The Linux A-Z" Prentice Hall Europe,2000.

[4]D.P.Bovet and M.Cesati "Understanding the Linux kernel",O'Reilly
&Associates,Inc.2001.

[5]Linux tutorial "http//www.yolinux.com/tutorial/"

[6] P.B.Galvin "Applied OS concepts", Addison-Wesley ,1999.

 2010AL-Mansour Journal / No.14/ Special Issue /(Part One))الجزء الاول (/ خاص14/ عدد/مجلة المنصور

- 10th Scientific Conference 24-25 Oct.2009 - 105 2009 تشرين الاول 25-24ر ــاشـي العــر العلمــالمؤتم

 انشاء مكتبة روابط لحل مشكلة تزامن البرامج

 ندا عبدالزهرة عبداالله.د

 جامعة بغداد

 : المستخلص

الحѧل الѧذي . أآثر البرامج يراد أن تكتب بطريقѧة لتهѧتم بوجѧود بعѧضها الѧبعض و تتعѧاون مѧع بعѧضها لانجѧاز هѧدف معѧين
بغѧض النظѧر عѧن الميكانيكيѧة المѧستخدمة، . بѧرامج يضمن تعاون البѧرامج مѧع بعѧضها هѧو ميكانيكيѧة الأتѧصال المتѧداخل لل

 .هناك آلفة إضافية متأتية من تبديل سياق تنفيذ البرامج طالما إن هناك برامج تعمل معاً

فكѧرة الѧѧروابط هѧو إن آѧѧل برنѧامج يكѧѧون لѧه جѧѧزء مѧن وقѧѧت . للتغلѧب علѧѧى هѧذه المѧѧشكلة يفѧضل اسѧѧتخدام مفهѧوم الѧѧروابط
وآѧل رايѧط يѧشترك مѧع بقيѧة الѧروابط بѧنفس هياآѧل البيانѧاتو ,ط تعمل في نفس الوقѧت المعالج مشترك بين عدد من الرواب

 .الذاآرة للبرنامج التابعين له

وآتطبيѧق علѧى اسѧتخدام هѧѧذه . فѧي هѧذا البحѧث تѧم إنѧشاء مكتبѧة روابѧط جديѧدة وسѧهلة الأسѧتخدام فѧي مѧستوى المѧستخدم
أسѧتخدمت لغѧة سѧي للبرمجѧة تحѧت نظѧام .المكتبة تم بناء برنѧامج لحѧل مѧشكلة الخѧزن غيѧر المحѧدد فѧي المخѧزن المؤقѧت

 .التشغيل لينكس

