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Abstract:

After the 1973, there are several Public Key Cryptosystems are developments,
all systems based on hard mathematical problems such as Discrete Logarithm,
Integer Factorization, Subset, or Elliptic Curve Discrete Logarithm Problem.
Which problems are defined over Finite Abelian Group. In this paper we
proposes new concept in the public key system that is depend on complex
numbers field. The complex numbers can be define over Finite Field to
construct an Abelian Group under addition and multiplication operations, we
call it Complex Finite Field. There are a hard mathematical problem is proposed
in the constructed group we call it Complex Discrete Logarithm Problem. After
that we design public key cryptosystems based on the suggested problem.
Also it appears to offer equal security for a far smaller bit size, with problem
harder than DLP.
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1. INTRODUCTION

Mathematics is amazing not only in its power and beauty, but also in the way
that it has applications in so many areas. Complex numbers comprise a
computational system within which one may clarify and study many kinds of
mathematical problems. In this brief essay, we will describe the complex
number system carefully and pose several computational problems for
discussion. Then we will apply the system to develop the mathematical
problem such as Discrete Logarithm Problem (DLP) of construction with
straightedge and compass, we call it Complex Discrete Logarithm Problem.
Finally, we will apply the system to construct public key cryptosystems based
on Complex Finite Field.

However, there is an even more essential reason why most practicing
mathematicians can get by with a rather naive understanding of numbers and
might be better off doing so. This is because of the extremely useful geometric
picture of the real and complex numbers. Much of the time, it is perfectly
reasonable to visualize the complex numbers as a geometric plane, and base
all other constructions upon that basic picture, oblivious to the fine structure
of our objects, pretty much as one can do plenty of classical physics without
worrying about the fact that the macroscopic objects we are considering arise
from the complicated interaction of elementary Lnarticles [1]-

The introduction of complex numbers in the 16" century was a natural step in a
sequence of extensions of the real number, because the square of real number
can not be negative, the equation x’=-1, has no solution in the real number
system. In the eighteenth century mathematicians remedied this problem by

invented a new number, which they denoted by i= J=1and which they defined

to have the property ?=-1this, in turn, led to the development of the complex
number which are number of the form a+bi [2].

2. THE COMPLEX NUMBERS

Complex numbers are said to have real and imaginary parts. If z=a+bi, then the
real part of z is denoted by $#e(z)=a and Im(z)=b denotes the imaginary part of
z. The complex numbers are defined to be the set:

C={a+bila,beR, and +1=0}

We add and subtract complex numbers by adding and subtracting their real
and imaginary parts and multiply complex numbers the way we multiply other
binomial, using the fact that #=-1 [3]:

(@a+bi)+(c+di)=(a+c)+(b+d)i

(a + bi) - (c + di) = (ac — bd) + (ad + bc)i

10" Scientific Conference 24-25 Oct.2009 -106 - 2009 J5Y) (sl 25-24 pdilad) malad) jalgal)



AL-Mansour Journal / No.14/ Special Issue /( Part One) 2010 (ds¥ sl )| el M4 | jgaia) ddaa

These definitions are natural enough. For example, the definition of
multiplication comes from assuming the field properties and using the relation
#+1=0. With these operations, it's possible to show that (C,+,) is a field. The
conjugate of z is z=a-bi. The norm of a complex number is defined as:

N(z) =4z, +2,°

Proposition: The following are easy to show from the definitions above:
1.2=1.

2. 2+2=2-R(z).

3.2-2=2-3(2)i.

4. 7.7=N(2)%

5. N(z-w)=N(z)N(w).

In particular, a+bi=0 if and only if a=0 and b=0 or equivalently, if and only if
a’+b*=0 [3].

All the standard properties that apply to Real Numbers, like the Distributive,
Commutative, and Associative Properties, also apply to Complex Numbers.

3. COMPLEX FINITE FIELD LAWS

The paper proposes a definition of a Complex Finite Field defined over finite
field F; denoted by C(F,). In this subsection, we shall study some of theoretic
properties of the C(F,).

Defenition 1 (Complex Finite Field): The (C(Fg),+,-) is a finite field with the
following group theoretic properties:
Let a=aq+a.i,b=b1+b2i,c=cq+czi,a,b,ceC(Fy) and aq,az2,b1,b2,¢1,Cc2€F,.
a:-Additive Properties

(1) Closure: Ya,beC(F), then atbeC(F,).

(2) Identity: VacC(Fg), then atla=Ia+a=a, so that /,=(0+0i).

(3) Inverse: VaeC(F,), then a+(-a)=l4.

(4) Associativity: Va,b,ceC(Fg), then (a+b)+c=a+(b+c).

(5) Communicative:Va,beC(F,), then at+b=b+a.
b:- Multiplicative Properties

(1) Closure: Va,beC(F,), then a-beC(Fj).

(2) Identity: VacC(F,), then a-Iy=Iy-a=a, so that I, =(1+0i).

(3) Inverse: YacC(F,), then a-a™'=Iy.

(4) Associativity: Va,b,ceC(F,), then (a-b) -c=a{b-c).

(5) Communicative: Va,beC(F,), then a-b=b-a.
c:-Addition and Multiplicative Properties

(1) Distributive: Va,b,ceC(F,), then a- (b+c)=a-b+a-c.

(2) No zero divisors: if a,beC(F,) and a-b=0, then either a=0 or b=0.
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(3) Elements of the field: C(Fq)* ={VaeC(F4) and a4,a2eFg} is a group of C(F,),
that is generated from complex numbers.

Definition 2: Let a be an complex number element of the group C(F,) and a # 0.
Then a is said to have order k if
a=aa........ a=ly
k product
with a* # Iy for all 1sk’< k (that is, k is the smallest integer such that a*=ly). If
such a k exists, then, the subgroup of C(F,) is said to have finite order k,
otherwise, it has infinite order.
Definition 3: From here on, for the multiplication operations on a C(F), for keZ,

acC(F,), and a # 0, then:

a =aa........ a, (k times), fork>0,
a’=Iy, and
a“=(a")¥ for k < 0.

Definition 4: The order of a C(F,) is defined as the number of complex number
element of C(F;) and denoted by #C.
If acC(F,) is of order k, then

H={a'|0<i<k-1},

is a subgroup of C(F,) of order k.

Definition 5: Let acC(F,), and a # 0. Then a is said to generator element if
ord(a) = #C

Then,
C(F,) ={ a“| 0k < #C-1},

4. COMPLEX DISCRETE LOGARITHM PROBLEM (CDLP)

One of the most interesting open problem in cryptography is the realization of
a trapdoor on the discrete logarithm, in which to solve the DLP is hard only if
published parameters are used, while it is easy by using a secret key (trapdoor

key) [4].

Th?lgl_]P can be defined on various finite groups as well as multiplicative group
over a finite filed F, [5], this idea can be extended to arbitrary groups and, in
particular, to Complex Group. A typical example except the multiplicative
group is the discrete logarithm problem on Complex number over F,; and
many cryptographic schemes are constructed on the CDLP.

Definition 6 (CDLP): For a Complex Finite Field C(F,), let a, b € C(F), recall that
in the CDLP to find an integer k € Z, is such that a“=b.

Since a Complex Finite Field C(F,) is made into Abelian group by a complex
number multiplicative operation. The exponential of a complex element on
C(Fq4) actually refers to the repeated multplications. Therefore, b=a' is the i
power of acC(F,) is the i multiple of a. The logarithm of b to the base a
would be i (i.e. the inverse of exponentiation). The CDLP is of interest because
its apparent intractability forms the basis for the security of Complex
cryptographic schemes.
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5. COMPLEX CRYPTOSYSTEMS (CCS)

Unlike previous cryptosystems, complex number work as a finite Abelian
group formed by the complex elements on C(F,;) group defined over a finite
field. CCS include Key Distribution, Encryption/Decryption Schemes, and
Digital Signature Algorithm (DSA). The key distribution algorithm is used to
share a secret key, the encryption/decryption algorithm enables confidential
communication, and the DSA is used to authenticate the signer and validate
the integrity of the message.

This section proposes cryptosystems that employs Complex Finite Field. It
does not invent new cryptographic algorithm, but it is the first to implement
existing public-key cryptosystem using complex numbers. The proposal is an
analogues to the Diffie-Hellman key exchange protocol, analogues to EIGamal,
Massey-Omura schemes, and DSA. The modular complex number
multiplication operation in CCS is the counterpart of modular multiplication in
RSA and ElGamal, and exponentiation of complex in C(F,) is the counterpart of
the modular exponentiation. To form cryptographic system using complex
number, we need to find a “hard problem” corresponding to the difficulty of
factoring the product of two prime or taking the discrete logarithm or elliptic
curve discrete logarithm.

Consider the equation b=a*, where a and b are two complex number in the
C(Fq) and k is an integer. It is relatively easy to calculate b given a and k, but
determining the integer k from a multiple of a element a*, even with the
knowledge of a, b and C(F,) is a very difficult problem, known as the Complex
Discrete Logarithm Problem (CDLP).

5.1 Exponentiation over complex group C(F,)

The fundamental operation in complex cryptographic schemes is that of
complex element exponentiation of a complex element by an integer. If not the
most confusing term, certainly the idea of multiplying matrix refers to
computing b=a*, where a and b are two complex numbers in the C(Fq), group
and k is an integer. This really means that we multiply a to itself k times.

Definition 7 (Exponentiation of a complex number on complex group C(F,) by
an integer): Given k € Z, and a is a complex element on a C(F,), then
a“=aa-......... ‘a (k times)............... (1)

And it is so called complex number exponentiation, and it is the dominant cost
operation in complex cryptographic schemed, and it dominates the execution
time of complex cryptographic schemes, especially the representation of
CDLP.

The algorithm that can be used to compute the complex exponentiation in
the C(F,), group is Repeated-Squaring and Multiplication or fast group
operation Method.
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5.2 Repeated-Squaring and Multiplication Method

The most fundamental computation on C(F,;) group is the multiplication
operation as shown in equation(1) with k are very large positive integer, since
the computation of a* is so fundamental in all complex numbers related
computations and applications, it is desirable that such computations are
carried out as fast as possible.

Remarkably enough, the idea of repeated squaring for fast exponentiation can
be used almost directly for fast group operation on C(Fy).

Let e;.1 €n2 ...... es €9 be the binary representation of k. then for j starting
from n-1 down to 0 (e,.; almost 1 and used for initialization), check whether
or not e; =1. If e; =1, then perform a squaring and a multiplication group
ogeration; otherwise, just perform a squaring operation. For example: compute

a®, since 67= 1000011, we get the following table:

Table 1 Compute a® using repeated Squaring and Multiplication

i | e |Value | Operations Status

6 |es |1 a Initialization

5 |es |0 a’=a’ Squaring

4 |es |0 (g?2=a* Squaring

3 |es |0 ((a222;2=a8 Squaring

2 |e; |0 (@) 2222=a16 Squaring

1 ey |1 (")) 2222-a= a* Squaring and Multiplication
0 e |1 (((((@*)H*)H*a)*-a= a* Squaring and Multiplication

We have the following algorithm which implements this idea of repeated
squaring and multiplication (fast group operation) for computing a*, that is, it
reduces the complexity of the computation of a* from k to log k.

Algorithm (Repeated-Squaring and Multiplication )

Input: a complex number a€ C(F,;) and positive integer k.

Output: complex number b= a*.

1. Write k in the binary expansion form k=e,.1 e ...... e1 €9 (Assume k has
n bits)
2. Setb=Iy.

3. Compute a*:
3.1 Forifrom n-1 down to 0 do
3.2 b=b>
3.3 ifej=1, then b=b-a.

4. Output b: (now b=a").

6. COMPLEX PUBLIC-KEY CRYPTOSYSTEMS

The section introduces design of public-key cryptography that employs the
complex finite field. More specifically, it’ll introduce complex cryptosystems
analogues to several well known public-key cryptosystems including key
exchange, encryption/decryption, and DSA schemes.
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For any cryptographic system based on the DLP, there is an analogy to
complex finite field. In what follows, it’ll introduce complex cryptosystems
analogues to three widely used public-key cryptosystems, namely Diffie-
Hellman key exchange system, the Massey-Omura, the El-Gamal public-key
cryptosystems.

6.1. Analogy of the Diffie-Hellman Key Exchange System

This system is merely a method for exchanging keys; no messages are
involved. Alice and Bob first publicly choose a finite field F; and a Complex
group C(F,) defined over it. Then they publicly choose a complex number
beC(F,) to serve as their “Base complex number”. It is a generator of the key.
To generate a key, Alice chooses random integer e between 1 and #C, and
keeps it secret. She then computes b°cC(F;) and makes that public. Bob
chooses his own secret random integer d between 1 and #C, and makes public
b%cC(F,). The secret key is then b**cC(F,). Both Alice and Bob can compute
this key. For example, Alice knows b® (public knowledge) and her own secret e.
Charlie, on the other hand, only knows b, b°® and b?. Without solving the CDLP,
(finding d knowing b and b%, there is no way for him to compute b°* only
knowing b° and b°. The following algorithm illustrates this manner.

Algorithm (Diffie-Hellman key exchange system with CDLP)

1. Initialization
e Alice and Bob publicly choose a complex finite field C(F,).
e They publicly choose a random “Base complex number” beC(F,)
such that b generates a large subgroup of C(Fj).
2. Key generation
e Alice chooses a secret random integer e. She then computes
b°cC(F,).
e Bob chooses a secret random integer d. He then computes
b%eC(F,).
e Make b° and b? public and keep e and d secret.
3. Calculation of the secret key b°*°
 Alice computes the secret key b**=(b
e Bob computes the secret key b®’=(b°)°.

d)e.

There is no known fast way to compute b if only knows b, b° and bd, which is
CDLP.

6.2. Analogy of the Massey-Omura Cryptosystem

In this system the complex finite field C(F,) have been made publicly known.
Alice and Bob both select a random integer e; and e, between 1 and #C
respectively with gcd(es, #C)=1 and gcd(e,, N)=1. They also compute their
inverses d; =e;" mod #C (ie. dse; =1 mod #C) and d; =e,”" mod #C (ie. d,e;=1
mod #C), then, keep everything secret. If Alice wants to send the message P,
(i.e. PlainText Complex, we represent the message as a pairs; each equivalent
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to complex number denoted by P. ) to Bob, she first sends him the message
P.%'. This means nothing to Bob, since he does not know d;. He ever, he can
exponentiate it by his e, and send the message P.°"®? back to Alice. Then Alice
can help unravel the message by exponentiating this new message by d; which
sends P, ®"°?"" = p_©? pack to Bob. Then Bob can exponentiate this message by
d; to get the original message (P. °**?= P.). During this process Charlie sees
Pce1, PceZ’ and Pce1eZ.

Without solving the CDLP —finding e, and then its inverse knowing P.*’ and
P.%"°? - there is no way for him to find P.. The following algorithm illustrates
this manner.

Algorithm (Massey-Omura Cryptosystem with CDLP)

1. Initialization
e Alice and Bob publicly choose a complex finite field C(F).
e They publicly known the order number of the of C(F,) denoted by
#C.
2. Key generation
e Alice chooses a secret random integer e; between 7 and #C, such
that gcd(es, #C)=1. She then computes its inverse d,;=e;" mod #C.
e Bob chooses a secret random integer e, between 7 and #C, such
that gcd(e,, #C)=1. He then computes its inverse d;=e,”’ mod #C.
o Keep e4, dy, €2, and d; secret.
3. Transmission procedure
Alice sends the message P. to Bob as follows:
Alice computes c‘*’, and sends it to Bob.
Bob computes  P.%"®%, and sends it to Alice.
Alice computes P °"¢?%" = p_®2 and sends it to Bob.
Bob computes P .*?%?=p,).

6.3. Analogy of the EIGamal Cryptosystem

In this system the complex finite field C(F,), and the “Base complex number”
beC(F,) are public information. Bob randomly chooses an secret integer d
(1<d<#C), and publishes the complex b”. If Alice ants to send the message P,
(i.e. PlainText Complex, we represent the message as a pairs; each equivalent
to complex number denoted by P. ) to Bob, she will choose a secret random
integer e (1<e<#C) and send (P. -b®°, b°) to Bob.

Bob will then exponentiate the second complex number in the pair by d to get
b°%? the compute the inverse of the key complex b°? to get (b°°)" and multiply
by the first complex in the pair P, -b® to find P.. In the meantime, Charlie has
only seen b® and b°. Without solving the CDLP (eg. finding d knowing b and b°),
there is no way for him to find P.. The following algorithm illustrates this
manner.

Algorithm (EIGamal Cryptosystem with CDLP)

1. Initialization
e Alice and Bob publicly choose a complex finite field C(F,).
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e They publicly choose a random “Base complex number” beC(F)
such that b generates a large subgroup of C(Fj).
2. Key generation
e Bob chooses a secret random integer d in interval [2, #C].

e He then computes Q=b°.
e Make Q public and keep d secret.
3. Encryption

Alice sends the message P to Bob as follows:
Select random integer e in interval [2, #C].
Compute b°.
Compute K=Q°, (i.e. K=b").
Compute ciphertext complex C.= P.+K.
Transmit the pair complexes (C., b°).
4. Decryption
Bob retrieves the message as follows:

e Compute K=(b°9, (i.e. K=b*").

e Compute -K, add -K with the ciphertext complex C.:

P.=C.-K.

7. IMPLEMENTATION

The proposed system us programmed by MatLap Version 7 programming
language on P4 PC with CPU of 3 G.B and RAM of 2 G.B. Then the methods is
applied on different size messages, which takes plaintext and devided into
pairs of blocks each pair corrispond to complex number containd in C(F,) and
computes the running time of the encryption and decryption of each
messages.

A. Diffie-Hellman key exchange system with CDLP
1. Initialization

- Alice and Bob publicly choose a complex finite field C(Fa919).

- They publicly choose a random “Base complex number”
b=2998+3213icC(F4919) such that 2998+3213/ generates a large
subgroup of C(Fig19).

2. Key generation

- Alice chooses a secret random integer e=4725. She then computes
b°=(2998+3213i)*"*°=3546+4255i.

- Bob chooses a secret random integer d=1234. He then computes
b°=(2998+3213i)'2*=1973+1049i.

- Make b° and b? public and keep e and d secret.

3. Calculation of the secret key b°*®
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- Alice computes the secret key bed=(b°’)e=(1973+104994725=287o+1364i.
- Bob computes the secret key b®?=(b°)?=(3546+4255i)'2**=2870+1364i.

B. Massey-Omura Cryptosystem with CDLP
1. Initialization
- Alice and Bob publicly choose a complex finite field C(Fa919)-
- They publicly known the order number of the of C(Fs919) denoted by
#C=24196560.
2. Key generation
- Alice chooses a secret random integer e€4=9321841, such that
gcd(9321841,24196560)=1. She then computes its inverse di=e;” mod
#C =9321841" mod 24196560=623281.
- Bob chooses a secret random integer e,=5463829, such that
gcd(5463829,24196560)=1. He then computes its inverse d,=e,™ mod
#C =5463829" mod 24196560=19433869.
- Keep eq, dq, €2, and d; secret.
3. Transmission procedure
Alice sends the message P.=1000+2000/ to Bob as follows:
- Alice computes P.°'=(1000+20004)°*?'3*'=4495+1682i, sends it to Bob.
- Bob computes P.°'°?=(4495+1682i)>*°*%2°=598+3852i, sends it to Alice.
- Alice computes P '*?"'=(598+3852/)°2*2%1=3675+3069i= P.%, sends it to
Bob.
- Bob computes P ®?%=(3675+3069/)'*3%%¢°=1000+2000i=P.).

C. EIGamal Cryptosystem with CDLP
1. Initialization

- Alice and Bob publicly choose a complex finite field C(Fa919).

- They publicly choose a random “Base complex number”
b=2998+3213ic C(F4919) such that generates a large subgroup of
C(Fa919)-

2. Key generation

- Bob chooses a secret random integer d=1234.

- He then computes Q=b"=(2998+3213)'***=1973+1049i.

- Make Q public and keep d secret.

3. Encryption
Alice sends the message P.=1000+2000i to Bob as follows:

- Select random integer e=4725.

- Compute b°=(2998+3213i)*"*°=3546+4255i.

- Compute K=Q°=(b")°=(1973+1049i)*"*°=2870+1364i (i.e. K=b").

- Compute ciphertext complex
C.=P.+K=1000+2000/+2870+1364i=3870+3364i.

- Transmit the pair complexes (C., b%)=( 3870+3364i, 3546+4255i).

4. Decryption
Bob retrieves the message as follows:

- Compute K=(b°)d=(3546+4255i)'*** =2870+1364i, (i.e. K=b*).

- Compute -K=-2870-1364i=2049+3555i under C(F4919).

- Add -K with the ciphertext complex C.:

P.=C +(-K)= 3870+3364i+2049+3555i=1000+2000;.
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8. THE COMPUTATIONAL COMPLEXITY

The Computational Complexity of the EI-Gamal encryption/decryption
algorithms using DLP compared to proposed problem CDLP is as follows:

1. Encryption/Decryption using DLP:

Let the size of the input message block be n.

The complexity of the computing q=b° is:

T(Q)=T(b°)=0(log n) arithmetic (multiplication) operation, using Fast
Exponential Algorithm, each multiplication operation has O(log® n) bit
operation [6].

Then,
T(Q)=0(log® n) bit operation.
Also, T(k)=0O(log® n) bit operation.

The complexity of the computing ciphertext c=m*k is:
T(c)=T(m*k)=0(log? n) bit operation, for each encryption block, suppose
there are 100 blocks of message; then, 1007(c)=100T(m*k)=0(100/og? n).

The overall Complexity is O(100/og? n)+O(2log® n).

2. Encryption/Decryption using CDLP:

Let the size of the input message block be n.

The complexity of the computing q=b° is:

T(Q)=T(b°)=0(log n) complex multiplication operation, using Repeated
Squaring and Multiplication method.

Then,
T(Q)=0(2log® n) bit operation.
Also, T(K)=0(2log® n) bit operation.

The complexity of the computing ciphertext C.=P.-K is:
T(C.)=T(P.-K)=0(2log® n) bit operation, for each encryption block,
suppose there are 100 blocks of message (are represented as 50 pairs of
each pair correspond to complex number); then,
50T(C.)=50T(P.-K)=0(100/og? n).

The overall Complexity is O(100/og? n)+O(4log® n).

Finally, the computational complexity of the implementation of
encryption/decryption function are same approximately.
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9. THE RUNNING TIME COMPARISON

The running time of the ElI-Gamal method with DLP over F4919 and the base
number is 4567, the secret key is 2931 and the public key is 4066. The order of
the multiplicative group over F4 is g-1, then, the order of the multiplicative
group over F4919 is 4918. The DLP over F4919 is solved by 0 msec.

The running time of the El-Gamal method with CDLP over Fs919 and the base
complex number 2998+3213i, the secret integer key is 4725 and the public
complex key is 3546+4255i. The order of the C(F,) group of base complex is
g*-1, then, the order of the C(Fas19) group of base complex number 2998+3213
is g°-1=24196560. The CDLP over Fos is solved by 16 msec.

Therefore, we conclude the order of the C(F,) group of base complex number
is g>-1 or its factors. The following table explain the running time of solving
DLP and CDLP over Fag19, Fs9011, Fe99367, F2099221, and Fagggga1.

Table 1 Running Time of solving DLP and CDLP in msec

Finite DLP CDLP

Field Base p Running Base p Running
Fq Number | ' °We' Time Complex ower Time
Fag19 4567 2931 0 2998+3213i | 2931 63

Fs9011 | 54567 52931 0 2998+3213i | 52931 1140
Feog367 | 664567 | 652931 125 2998+3213i | 652931 14062
Fa099221 | 1774567 | 2077731 | 140 2998+3213i | 2077731 | 154682
Fagg9991 | 8999999 | 9888888 | 953 2998+3213/ | 9888888 | 1392138

There is a clear growth of the time execution when use the complex group
C(Fy) and increase as long as the finite field size is increased. This
increasing with small numbers, what is happen when a large number is
applied, such as 100 digit number, 200 digit number or more, the complexity

is increased rapidly, show Figure 1.

10. SECURITY OF COMPLEX CRYPTOSYSEMS

The complication associated with CCS comes from the wide variety of possible
group structures of the complex element in the C(F,;) and from the fact that
complex modular multiplication is somewhat more complicated than classical
modular multiplication.
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Figure 1: The complexity evaluation of DLP and CDLP

The security of CCS depends on how difficult it is to determine the integer d,
given the complex number b and the complex a° where b=a® mod q. This is
referred to as the CDLP. Also that it appears to offer equal security for a far
smaller bit size, because the size (order) of the C(F,) appears at most q> -1, that
means the calculation is applied with g-bit size, while to solve the CDLP needs
g°-1 operations.

Therefore, the cryptanalyzer need to analysis and solve the CDLP to
cryptanalysis the public based on it.

11. CONCLUSION

The project defined the C(F,) that proved as an Abelian group to use it in the
proposed cryptosystems. Then, discover that the C(F,;) group has a one way
function similar to DLP and ECDLP, which CDLP. The construction of cipher
system is based on the difficulty of solution of the CDLP that is a clear change
in the cryptography and opens new windows for treatment with special group
and new operations. There is a computational advantage in using the CCS with
the shorter key length that reduces the overall calculations with secure
system. The CDLP appears more complicated than DLP, because the complex
operations increase the complexity as long as the size is increased.

The CDLP over F, is more intractable than the DLP in F,. It is this feature that

makes cryptographic system based on the CDLP even more secure than that
based on the DLP, because the C(F,) gives a large group over small field size.
Since the group C(F,) of order g1 or its favtors, therefore, some of the
strongest algorithms for solving DLP cannot be adaptive to the CDLP.
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	Defenition 1 (Complex Finite Field): The (C(Fq),+,() is a finite field with the following group theoretic properties:
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