Dr. Haider H. Abbas ST X SETTEN

NEURAL NETWORKS BASED NOISE CANCELLER

Dr. Haider Hadi Abbas

Mansour University College

Abstract:

This paper deals with the implementation of noise canceller using neural
networks. Two types of noise canceller has been software implemented. Then
the performance of them has been checked for different training algorithms.

At first, batch gradient descent algorithm is used with different noise levels.
The effect of increasing noise levels is to degrade the performance (increasing
the mean square error) for the two systems under consideration. Then for the
same training algorithm, the effect of hidden layer neurons is investigated. It is
clear that increasing hidden layer neurons degrades the performance of the
two above systems.

The second training algorithm which is used is gradient descent with
momentum. The effect of increasing momentum is to improve the performance
of the two noise canceller systems.

The third training algorithm which is used is gradient descent with variable
learning rate. As in the case of momentum, increasing learning rate improves
the performance of the two above systems.

Then the effect of momentum with learning rate increase is investigated. It is
clear that the effect of momentum with learning rate increase will improve the
performance.

The last training algorithm which is used is resilient backpropagation and it
gives the best performance at all.

10" Scientific Conference 24-25 Oct.2009 -230 - 2009 Js¥) (sl 25-24 pdilad) malad) sl gal)

AL-Mansour Journal / No.14/ Special Issue /(Part One) 2010 (ds¥ s3all) | Gald 1435 | jguaiall Uaa

1. INTRODUCTION

Neural networks can be trained to recognize and produce both spatial and
temporal patterns.

An example of a problem where temporal patterns are recognized and
classified with a spatial pattern is noise cancellation.

Noise cancellation requires that a noisy waveform be presented to the network
through time, and the network output the waveform without noise [1, 2, 3].

2. BACKPROPAGATION ALGORITHM

The simplest implementation of backpropagation learning updates the network
weights and biases in the direction in which the performance function
decreases most rapidly (the negative of the gradient). One iteration of this
algorithm can be written

(1)
Xk+1 = Xk — Ok Gk

Where X is a vector of current weights and biases, gk is the current gradient,
and ag is the learning rate.

There are two different ways in which this algorithm can be implemented:
incremental mode and batch mode. In the incremental mode, the gradient is
computed and the weights are updated after each input is applied to the
network. In the batch mode all of the inputs are applied to the network before
the weights are updated. The next section describes the batch mode of training
[1, 2,3, 4,5, 6].

3. BATCH TRAINING

In batch mode the weights and biases of the network are updated only after the
entire training set has been applied to the network. The gradients calculated at
each training example are added together to determine the change in the
weights and biases. The original algorithm to accomplish the above task is
batch gradient descent algorithm [7, 8, 9, 10].

10™ Scientific Conference 24-25 Oct.2009 -231 - 2009 J¥) (n i 25-24 miilad) pmalad] jmdipall

Dr. Haider H. Abbas ST X SETTEN

4. BATCH GRADIENT DESCENT WITH MOMENTUM

In addition to batch gradient descent algorithm, there is another batch
algorithm for feedforward networks that often provides faster convergence
which is steepest descent with momentum. Momentum allows a network to
respond not only to the local gradient, but also to recent trends in the error
surface. Acting like a low-pass filter, momentum allows the network to ignore
small features in the error surface. Without momentum a network may get
stuck in a shallow local minimum. With momentum a network can slide through
such a minimum. Momentum can be added to backpropagation learning by
making weight changes equal to the sum of a fraction of the last weight change
and the new change suggested by the backpropagation rule. The magnitude of
the effect that the last weight change is allowed to have is mediated by a
certain momentum constant which can be any number between 0 and 1. When
the momentum constant is 0, a weight change is based solely on the gradient.
When the momentum constant is 1, the new weight change is set to equal he
last weight change and the gradient is simply ignored. The gradient is
computed by summing the gradients calculated at each training example, and
the weights and biases are only updated after all training examples have been
presented [7, 8, 9, 10].

5. FASTER TRAINING

The previous section presented two backpropagation training algorithms:
gradient descent, and gradient descent with momentum. These two methods
are often too slow for practical problems. In this section we discuss several
high performance algorithms that can converge from ten to one hundred times
faster than the algorithms discussed previously. All of the algorithms in this
section operate in the batch mode [11, 12, 13].

5.1 Variable Learning Rate

With standard steepest descent, the learning rate is held constant throughout
training. The performance of the algorithm is very sensitive to the proper
setting of the learning rate. It is not practical to determine the optimal setting
for the learning rate before training, and, in fact, the optimal learning rate
changes during the training process, as the algorithm moves across the
performance surface. The performance of the steepest descent algorithm can
be improved if we allow the learning rate to change during the training process.
An adaptive learning rate will attempt to keep the learning step size as large as
possible while keeping learning stable. The learning rate is made responsive to
the complexity of the local error surface. An adaptive learning rate requires
some changes in the original training procedure. First, the initial network
output and error are calculated. At each iteration new weights and biases are

10" Scientific Conference 24-25 Oct.2009 -232 - 2009 Js¥) (sl 25-24 pdilad) malad) sl gal)

AL-Mansour Journal / No.14/ Special Issue /(Part One) 2010 (ds¥ s3all) | Gald 1435 | jguaiall Uaa

calculated using the current learning rate. New outputs and errors are then
calculated [11, 12, 13].

5.2 Resilient Backpropagation

Multilayer networks typically use sigmoid transfer functions in the hidden
layers. These functions are often called "squashing” functions, since they
compress an infinite input range into a finite output range. Sigmoid functions
are characterized by the fact that their slope must approach zero as the input
gets large. This causes a problem when using steepest descent to train a
multilayer network with sigmoid functions, since the gradient can have a very
small magnitude; and therefore, cause small changes in the weights and
biases, even though the weights and biases are far from their optimal values.

The purpose of resilient backpropagation training algorithm is to eliminate
these harmful effects of the magnitudes of the partial derivatives. Only the sign
of the derivative is used to determine the direction of the weight update; the
maghnitude of the derivative has no effect on the weight update. The size of the
weight change is determined by a separate update value. The update value for
each weight and bias is increased by a certain factor whenever the derivative
of the performance function with respect to that weight has the same sign for
two successive iterations. The update value is decreased by the same factor
whenever the derivative with respect that weight changes sign from the
previous iteration. If the derivative is zero, then the update value remains the
same. Whenever the weights are oscillating the weight change will be reduced.
If the weight continues to change in the same direction for several iterations,
then the magnitude of the weight change will be increased [11, 12, 13].

6. PROBLEM DEFINITION

The problem to be solved in this paper is as follows:

A noisy waveform (sin or square) is introduced to the network with different
noise levels are considered. Four patterns are used as an input to the network.
The target will be the waveform without noise (sin or square).

7. SOFTWARE IMPLEMENTATION

7.1 Sine Wave Noise Canceller

The software implementation of this part is shown in the following flowchart:

10™ Scientific Conference 24-25 Oct.2009 -233 - 2009 J¥) (n i 25-24 miilad) pmalad] jmdipall

Dr. Haider H. Abbas ST X SETTEN

A 4

Input, the training algorithm, the training steps, the learning rate, the momentum
(if necessary), the learning rate increase (if necessary), the noise levels, and the

Hidden layer neurons

A 4
1. Input P4, P2, P3 and P4

(the input patterns)

v

Train the network by using one of the following training algorithms

1. Batch Gradient Descent algorithm.
2. Gradient Descent with Momentum.
3. Gradient Descent with Variable Learning Rate.

A 4

Test the network by measuring the Mean Square
Error (MSE) which the average squared error
(the difference between the actual output and

the desired output (the target))

v

If the MSE is within a
specified limit

l YES

Display the actual and the

desired output

l

Fig. (1) sine and cosine wave noise canceller Flowchart

For this case the input patterns are:

10" Scientific Conference 24-25 Oct.2009 -234 - 2009 Js¥) (sl 25-24 pdilad) malad) sl gal)

AL-Mansour Journal / No.14/ Special Issue /(Part One) 2010 (ds¥ s3all) | Gald 1435 | jguaiall Uaa

p1=sin (2750 t) + Noise 1

p2=sin (2750 t) + Noise 2

p3=sin (2750 t) + Noise 3

ps=sin (2750 t) + Noise 4

Noise 1, Noise 2, Noise 3 and Noise 4 are chosen by the program.
And the output is:

t1-sin (27 50 t)

The program for the above flowchart is written using Matlab programming
language.

7.2 Square Wave Noise Canceller

The software implementation of this part uses the same flowchart shown in
Fig. (1).

The difference between two models is that for this case the input patterns are:
p1=square (27 100 t) + Noise 1

p2=square (27 100 t) + Noise 2

ps =square (27 100 t) + Noise 3

ps=square (27 100 t) + Noise 4

And the output is:

t1=square (27 100 t)

The program for this part is written by the same programming language used
in part one

8. SOFTWARE TESTING

The implemented noise canceller performance is tested for different cases. The
performance measure is the Mean Square Error (MSE) which the average

10™ Scientific Conference 24-25 Oct.2009 -235 - 2009 J¥) (n i 25-24 miilad) pmalad] jmdipall

Dr. Haider H. Abbas ST X SETTEN

squared error (the difference between the actual output and the desired output
(the target)). The implemented software is tested for the following cases:

8.1 Effect of Noise Levels

In this case three sets of noise levels are considered which are:

1- 0.01 0.015 0.02 0.025
2- 0.015 0.02 0.025 0.05
3- 0.02 0.025 0.05 0.1

With the training algorithm is gradient descent algorithm.

a- The training steps are 50.

b- The learning rate is 0.05.

c- The number of iteration is 1000.
d- The hidden layer neurons are 20.

The output for the two cases (sin and square) is shown in Table (1).

Table (1)

(Sine wave / mean square error) | (Square wave / mean square error)

1 0.0015 0.00086
2 0.0022 0.00123
3 0.0041 0.00134

From the above table, it is clear that increasing noise levels degrades the
performance (increases the mean square error) for the two cases.

8.2 Effect of Hidden Layer Neurons

In this case five values for hidden neurons are considered which are:

10, 20, 30, 40, and 50.

10" Scientific Conference 24-25 Oct.2009 -236 - 2009 Js¥) (sl 25-24 pdilad) malad) sl gal)

AL-Mansour Journal / No.14/ Special Issue /(Part One)

2010

With

a-
b-
C-
d-

The training algorithm is gradient descent algorithm.

The training steps are 50.
The learning rate is 0.05.

The number of iteration is 1000.
The noise levels are 0.015, 0.02, 0.025, and 0.05.

The output for the two cases is shown in Table (2).

Table (2)
(Sine wave / mean square error) (Square wave / mean square error)
1 0.00213 0.00045
2 0.0022 0.0014
3 0.0034 0.2475
4 0.0074 Does not converge
5 Does not converge Does not converge

(Js¥ s3al) | pall [14ss |) puaiall Lna

From the above table, it is clear that increasing hidden layer neurons degrades
the performance (increases the mean square error). The reason for this
behavior is that the problem under consideration does not need a big number
of hidden layer neurons.

8.3 Effect of Momentum

In this case three values for momentum are considered which are:

1- 0.2
2- 0.5
3- 0.9
With
a- The training algorithm is gradient descent with momentum.
b- The training steps are 50.
c- The number of iterations is 1000.
d- The noise levels are 0.015, 0.02, 0.025 and 0.05.
e- The hidden layer neurons are 50.

10™ Scientific Conference 24-25 Oct.2009 -237 - 2009 Js¥) (s 25-24 dilal) (aladl paigall

Dr. Haider H. Abbas ST X SETTEN

The output for the two cases is shown in Table (3).

Table (3)
(Sine wave / mean square (Square wave / mean square error)
error)
1 0.0133 Doesn't converge
2 0.0094 0.0014
3 0.0085 0.00136

From the above table, it is clear that increasing the momentum improves the
performance (decreases the mean square error).

8.4 Effect of learning Rate Increase

In this case three values for learning rate increase are considered which are:

1- 1.01
2- 1.05
3- 1.09

With
a- The training algorithm is gradient descent algorithm with variable

learning rate.
b- The training steps are 50.

c- The learning rate is 0.05.

d- The number of iterations is 1000.

e- The noise level is 0.015, 0.02, 0.025, 0.05
f- The hidden layer neurons is 50.

The output for the two cases is shown in Table (4).

10" Scientific Conference 24-25 Oct.2009 -238 - 2009 Js¥) (sl 25-24 pdilad) malad) sl gal)

AL-Mansour Journal / No.14/ Special Issue /(Part One) 2010 (ds¥ s3all) | Gald 1435 | jguaiall Uaa

Table (4)
(Sine wave / mean square error) (Square wave / mean
square error)
1 0.0214 0.01
2 0.0199 0.0076
3 0.0188 0.0033

From the above table, it is clear that increasing learning rate improves the
performance (decreases the mean square error). The reason for this behavior
is the capability of increasing learning rate if necessary.

8.5 Effect of Momentum (With Learning Rate Increasing)

In this case the same values given in section 8.3 are given but with:
1. The learning rate increase is 1.05.

2. The training algorithm is gradient descent with momentum and variable
learning rate.

The output for the two cases is shown in Table (5).

Table (5)
(Sine wave / mean square (Square wave / mean square error)
error)
1 0.008 0.0032
2 0.0048 0.0028
3 0.0018 0.0015

From the above table, it is clear that the momentum will improve the
performance (decreases the mean square error) if it is included in addition to
learning rate increase.

10™ Scientific Conference 24-25 Oct.2009 -239 - 2009 Js¥) (s 25-24 dilal) (aladl paigall

Dr. Haider H. Abbas ST X SETTEN

8.6 Using Faster Training algorithms

In this subsection resilient backpropagation algorithm is used with the
following parameters:

a. The noise levels are 0.015, 0.02, 0.025 and 0.05.
b. The training step is 50.
c. The number of hidden layer neurons is 50.

d. The number of iterations is 1000.

And with three values for learning rate which are:

1- 0.01
2- 0.05
3- 0.09

The output for the two cases is shown in Table (6).

Table (6)
(Sine wave /mean square | (Square wave / mean square error)
error)
1 0.00138 3.47*10°
2 0.00105 2.89*10°
3 0.00104 4.97 *10°

From the above table, two points are concluded which are:

1- Resilient backpropagation algorithm gives the best performance at all.
2- Increasing the learning rate improves the performance.

10" Scientific Conference 24-25 Oct.2009 - 240 - 2009 Js¥) (sl 25-24 pdilad) malad) sl gal)

AL-Mansour Journal / No.14/ Special Issue /(Part One) 2010 (ds¥ s3all) | Gald 1435 | jguaiall Uaa

The following table summarizes the testing results:

Table (7)
Training algorithm Testing Testing result
parameter
Batch Gradient Increasing noise Degrading the performance
Descent algorithm levels (increasing the mean square error)
Batch Gradient Increasing Degrading the performance
Descent algorithm Hidden Layer (increasing the mean square error)
Neurons
Gradient Descent with Increasing the Improving the performance
Momentum Momentum (decreasing the mean square error)
Gradient Descent with Increasing the Improving the performance
Variable Learning Rate learning rate (decreasing the mean square error)
Resilient Improving the performance
Backpropagation (decreasing the mean square error).
This algorithm gives the best results
at all.

9. CONCLUSIONS

The following points are concluded from this work:

1. Increasing noise Levels degrades the performance of the system.

2. Increasing hidden layer neurons degrades the performance of the system .
3. The effect of momentum will improve system performance .

4. Increasing Learning rate improves the performance of the system .

5. Resilient backpropagation algorithm gives the best performance at all .

10™ Scientific Conference 24-25 Oct.2009 -241 - 2009 Js¥) (s 25-24 dilal) (aladl paigall

Dr. Haider H. Abbas ST X SETTEN

9. REFERENCES

1. Bosque, M. (2002), Understanding 99% of Artificial Neural Networks:
Introduction and Tricks, Writers Club Press.

2. Fansett (1994), Fundamentals of neural networks, prentice Hall.

3. Gurney (1997), An Introduction to neural networks, VCL press.

4. Haykin, S. (1999), Neural Networks, second edition, prentice Hall.

5. Haykin, S. (2008), Neural Networks and Learning Machines, Prentice Hall.

6. Aleksander, |., and H. Morton (1990), An Introduction to Neural Computing,
Chapman and Hall, London.

7. Fausett, L. (1994), Fundamentals of Neural Networks - Architectures,
Algorithms and Applications, Prentice Hall, Englewood Cliffs, NJ.

8. Dreyfus, S. E. (1990), “Artificial Neural Networks, Backpropagation and the
Kelley-Bryson Gradient Procedure”, Journal of Guidance, Control and
Dynamics, Vol. 13, No. 5, pp. 926-928.

9. Gallinari, P. (1995), “Training of Modular Neural Net Systems”, in: [Arbib
1995], pp. 582-585.

10. Rojas, R., and M. Pfister (1993), “Backpropagation Algorithms”, Technical
Report B 93, Department of Mathematics, Free University Berlin.

11. Mandic, D., and Chambers, J. (2001), Recurrent Neural Networks for
Prediction: Architectures, Learning algorithms and Stability, Wiley.

12. Moller, M. (1993), Efficient Training of Feed-Forward Neural Networks, PhD
Thesis, Aarhus University, Denmark.

13. Fahlman, S. (1989), “Faster Learning Variations on Back-Propagation: An
Empirical Study”, in: [Touretzky et al. 1989], pp. 38-51.

10" Scientific Conference 24-25 Oct.2009 -242 - 2009 Js¥) (sl 25-24 pdilad) malad) sl gal)

http://www.amazon.com/gp/associates/link-types/marketplace.html?t=neoxi-20&asin=0595219969
http://www.amazon.com/gp/associates/link-types/marketplace.html?t=neoxi-20&asin=0595219969

AL-Mansour Journal / No.14/ Special Issue /(Part One) 2010 (ds¥ s3all) | Gald 1435 | jguaiall Uaa

w\ S KA a A&'w.nl.i sla gaall Ja e
ke ga jua 2

dadall) patall A0S

:uéw‘

O o Gdlidia el sl oS Apaad) CUSUEY aladialy sl gall (3w asaal £ guda ga Giad) 13 gl
Al alad il g3 aladiiady dlld 5 oo il IS Gailad (and ol A (e g plia gudal) By e (e (ilida

By il o) Adlida sl gia iy giceal g (batch gradient descent) 4ol sall aladia a8 dglad) 3
Bl i ALl e gliial) SSI (Mean square error 335 i) ciliial gall Sa g sl gial) (5 giva
&) el ol ¢ra 4 oo 5 Apal) Al Appeaall LMY i3 iny o5 alaill Apa g Gl plaiidy 5 . oY)

e (e glaiall NS ciliua) gall A2) (527 g AdA) ASl dpuand) LYAY) das Bal)

83 il ¢ (gradient descent with momentum) & Wealaiiad a3 il 400 alail) 4) 53 ()
Aa el sl gl el e e e sl DS Cliual gal) Cppaa ga 2 ad)

(gradient descent with variable learning rate) . Weladia) ai 1) 480N abail) 4330 63)
e (e glaiall NS Ciliua) gall Cpuny g alaill Jana 305 () aad aad) 305 Alla B LaS
Crminy i g alnild) Jaaa By g ajaadl i) gl (a9 alaid) Jama 8ol) s a) s pand s
lial gall

sda o) ¢l g (resilient backpropagation) & Weladiu) a5l 3 —AY) abeil) da) sa o
LY Jo clial gal) Juadl cuas§ 4a 3) gAd)

10™ Scientific Conference 24-25 Oct.2009 -243 - 2009 Js¥) (S 25-24 milad) malad) jealgal)

