SOME CLASSAS OF FULL STABLITY BANACH ALGEBRA MODULES

Ass. Prof. Dr.Nadia M. J. Ibrahem ¹ nadiamj math@csw.uobaghdad.edu.iq

Ass. Prof. Uhood S. Al-Hassany ² uhood.s@sc.uobaghdad.edu.iq

Lecurer Dr. Farah J. Al-Zahed³ farahj math@csw.uobaghdad.edu.iq

Prof.Dr. Muna Jasim Mohammed Ali⁴ munajm math@csw.uobaghdad.edu.iq

Abstract: The research is an article that teaches some classes of fully stable Banach - Å modules. By using Unital algebra studies the properties and characterizations of all classes of fully stable Banach - Å modules. All the results are existing, and they've been listed to complete the requested information.

Keywords: Fully Stable Banach Algebra Modules, Fully Stable Banach Algebra Modules Relative to an ideal and Srongly fully stable Banach Algebra Modules Relative to an ideal

1. Introduction

Banach algebra theory (BÅ) is a mathematical abstraction. When abstract ideas and structures were first introduced in the early 20th century, both the language and the practice of mathematics underwent radical change. Let Å be a non-empty set, the set A is said to be algebra if (1) (Å, +, .) is vector space over a field F, (2) (Å, +, .) is a ring, and (3) (a)b = (ab) = a(b), \forall a, b \in Å [1]. In [2] S. Burris and

_

¹ Assist. Prof. Dr. , Department of Mathematics , Faculty of Science for Women , University of Baghdad , Baghdad , Iraq

² Ass. Prof. M.Sc. Department of Computer Science , Faculty of Science

[,]University of Baghdad, Baghdad, Iraq.

³ Lecurer Dr., Department of Mathematics, Faculty of Science for Women, University of Baghdad, Baghdad, Iraq

⁴ Prof.Dr , Department of Mathematics , Faculty of Science for Women, University of Baghdad , Baghdad , Iraq

H. P. Sankappanavar show that a ring R is an algebra $\langle R, +, -, 0 \rangle$ where + and · are binary, – is unary, and 0 is nullary satisfying that $\langle R, +, -, 0 \rangle$ is an abelian group, $\langle R_{1.} \rangle$ is a semigroup and x.y+z=x.y+(x.z), x+y.z=x.z+(y+z)z). The following is a definition of the Banach left Å- module that may be found in [3]: let Å be algebra, a Banach space E is called a Banach left Å-module if E is a left module over algebra \mathring{A} and $||a.x|| ||a|| ||x|| a \in \mathring{A}$, $x \in E$ [3]. In [4], a multiplier (homomorphism) means a map from a left Banach Å-module X into a left Banach A-module Y (A is not necessarily commutative) if it satisfies Ta.x = a. Tx. \forall a \in Å, x \in X. A submodule N of an R-module M is called stable, if f(N) \subseteq N for each R-homomorphism from N to M. In case each submodule of M is stable, then M will be called a fully stable module [5]. A fully stable Banach Åmodule M is called fully stable Banach Å-module if for every submodule N of M and for each multiplier $\theta: \mathbb{N} \to \mathbb{M}$ satisfies $\mathbb{N} \subseteq \mathbb{N}$ [6]. A Banach Å-module M is deemed a fully stable Banach A-module relative to an ideal K of Å if for every submodule N of M and for each multiplier $\theta: N \to M$ satisfies $N \subseteq N + KM$. For a nonempty subset M in a left Banach A-module X, the annihilator annÅ(M) of M is ann_å M = aÅ; a.x = 0, $\forall x \in M$ [7]. In [6], Let X be a Banach Å-module, Nx = $\{nx \mid n \in \mathbb{N}, x \in X\}$ and $P_v = \{py \mid p \in P, y \in X\}, ann_A \mathbb{N}x = \{a \in A, a. nx = A\}$ 0, \forall nx \in Nx} and ann_APy = {a \in A, a.py = 0, \forall py \in Py}. Recall that for n \in N, a left Banach Å-module X is said to be n-generated if there exists $x_1, ..., x_n \in X$ s.t each $x \in X$ can be represented as $x = k = 1a_k \cdot x_k$ for some $a_1, \dots, a_n \in A$. A cyclic module is just a 1-generated module [8The R-module If each of M's submodules has the form IM for a certain ideal I of R, then M is a multiplication module [9]. It is examined how fully stable Banach modules compare to ideals in terms of their constituents.

2. Fully Stabel Banach Å-Modules

Definition 2.1: "Put X is a B-Å-M, if \forall submodule N of X and for each multiplier $f: N \to X \ni f(N) \subseteq N$, then X is said to be F-S-B-Å-M" [10]. The proof of proposition (2.3) is in [10].

Definition 2.2: "A B-Å-M X is said to be satisfy B-C (Baer criterion) if each submodule of X satisfies B-C, this mean that \forall submodule N of X and A - multiplier $f: N \longrightarrow X$, \exists an element $a \in A$ such that $f(n) = an \forall n \in N$ ".

Proposition 2.3:

- 1- X is F-S-B- Å-M iff \forall $x,y \in X$ and N_x , K_y subsets of X, $y \notin N_x$ implies that $ann_{\mathring{A}} N_x \nsubseteq ann_{\mathring{A}} K_y$.
- 2- Let X be a F-S-B Å-M. If \forall x, y \in X, ann_Å $K_y = \operatorname{ann}_{\mathring{A}} N_x$ then $N_x = K_y$.

Proposition2.4: "Put X is a B-Å-M. Then $\operatorname{ann}_{X}(\operatorname{ann}_{\mathring{A}}(N_{x})) = N_{x}$, $\forall x \in X$ "B-C, iff holds for cyclic submodules of X".

Proof: "Assuming that B-C holds, and let $y \in \operatorname{ann}_X(\operatorname{ann}_A^*(N_x))$. Define $f: N_x \to X$ by f(a. nx) = a. ky, $\forall a \in A$. Put $a_1. nx = a_2. nx$, hence $(a_1 - a_2)nx = 0$, $a_1 - a_2 \in \operatorname{ann}_A^*(N_x)$, $(a_1 - a_2) \in \operatorname{ann}_A^*Ky$, then $(a_1 - a_2)ky = 0$, thus $a_1ky = a_2ky$, hence f is well defined. Clearly f is A-multiplier, and by assumption, $\exists t \in A$ $\exists tmx = f(mx)$, $\forall mx \in N_x$. Then in particular, $ky = f(nx) = tnx \in N_x$ $\operatorname{ann}_X(\operatorname{ann}_A^*(N_x)) \supseteq N_x$ hence $\operatorname{ann}_X(\operatorname{ann}_A^*(N_x)) = N_x$. On another direction, assuming that $\operatorname{ann}_X(\operatorname{ann}_A^*(N_x)) = N_x \quad \forall N_x \in X$, and for each A-multiplier $f: N_x \to X$, $s \in \operatorname{ann}_A(N_x)$, then we have $\operatorname{sf}(nx) = f(\operatorname{sn} x = 0)$. Thus $\operatorname{nx} \in \operatorname{ann}_X(\operatorname{ann}_A(N_x)) = N_x$ then $\operatorname{nx} = t nx$, for some $t \in A$, thus Baer criterion is holding".

Corollary 2.5: "X is F-S-B Å- M iff ann_X $(ann_A(N_x)) = N_x \ \forall x \in X$ ".

3. Fully Stabel Banach ALgebra Modules Relative To Ideal

Definition 3.1: "Let X be a B Å- M, X is called F-S-B Å- M-R-I K of Å, if \forall submodule N of X and for each multiplier $\theta: N \to X$ satisfies $N \subseteq N + KX$. Clearly, every F-S-B- Å-M is a F-S-B Å-M-R-I" [11].

Proposition 3.2: "X is F-S-B Å- M-R-I iff $\forall x, y \in X$ and N_x , Ky are subsets of X, $y \notin N_x + KX$ then $\operatorname{ann}_{\mathring{A}} N_x \nsubseteq \operatorname{ann}_{\mathring{A}} \operatorname{Py}$ ".

Proof: "assume that X is a F-S-B Å- M-R-I, K of Å, $\exists x,y \in X \text{ s.t } y \notin N_x + KX \text{ and } ann_{\mathring{A}}N_x \subseteq ann_{\mathring{A}}P_y$. Now, define $\alpha :< N_x > \to X \text{ by } \alpha(a.nx) = a.py$,

 $\forall a \in \mathring{A}$, if $a.nx = 0 \rightarrow a \in \operatorname{ann}_{\mathring{A}}(N_x) \subseteq \operatorname{ann}_{\mathring{A}}\operatorname{Py}$. This yields a.py = 0, hence α is well defined, clear α is a multiplier, because X is F-S-B \mathring{A} - M-R-I, \exists an element $t \in A \ni mx = tmx + w$, $\forall mx \in N_x$, $w \in KX$. Particularly, $py = \alpha(nx) = tnx + w \in N_x + KX$, which is a contradiction. Hence X is a F-S-B \mathring{A} - M-R-I. On anther direction, assuming that \exists a subset N_x of X and a multiplier $f : \langle N_x \rangle \rightarrow X$ s.t $N_x \not\subseteq N_x + KX$ then \exists an element $mx \in N_x \ni mx \not\in N_x + KX$. Now, let $s \in \operatorname{ann}_{\mathring{A}}(N_x)$; therefore, snx = 0, sf(mx) = f(snx) = f(snx) = f(tsnx) = f(0) = 0. Hence $\operatorname{ann}_{\mathring{A}}(N_x) = \operatorname{ann}_{\mathring{A}}(f(mx))$, and this is a contradiction".

Corollary 3.3: "Let X be a F-S-B Å- M-R-I, K of Å. Then $\forall x, y \in X$, and $\operatorname{ann}_{\mathring{A}}(P_y) = \operatorname{ann}_{A}(N_x)$ implies that $N_x + KX = Py + KX$ ".

Definition 3.4: "A B-Å-M, X is said to be satisfying B-C-R-I (Baer criterion relative to an ideal) K of Å, if each submodule of X satisfies B-C-R-I, i.e. \forall submodule N of X and Å - multiplier f: N \rightarrow X, \exists an element $a \in A$ s.t $n - an \in KX$. \forall $n \in N$ ".

Another characterization of F-S-B-Å-M-R-I is given in proposition (3.5) and corollary (3.6). For the proof see [11].

Proposition 3.5: "Put X is a B-Å- M. Then the B-C-R-I holds for cyclic submodules of X iff $\operatorname{ann}_X(\operatorname{ann}_{\mathring{A}}(N_x)) = N_x + KX$, $\forall x \in X$ ".

Corollary 3.6: "X is F-S-B-Å-M-R-I, $K \in A$ iff $\operatorname{ann}_{X} \operatorname{ann}_{A}(N_{x}) = N_{x} + KX$, $\forall x \in X$ ".

Definition 3.7: "A B-Å-M, X is said to be a multiplication Å-module if each 1-generated submodule of X is of the form KX for some ideal $K \in A$ ".

The relation between full stability and full stability relative to an ideal for Banach algebra modules is discussed the following proposition.

Proposition 3.8: "Let X be a multiplication Banach Å-module. X is F-S-B-Å-M iff it is F-S-B-Å-M-R-I, K of Å".

Proof: It is clear [12]

The quasi α -injective concept is introduced in the following definition.

Definition 3.9: "Let Å be a unital Banach algebra, $\alpha > 1$. An Å-M, X is said to be quasi α -injective if, $\varphi : \mathbb{N} \longrightarrow \mathbb{X}$ is an Å-M homomorphism s.t $\|\varphi\| \le 1$, \exists Å-M, homomorphism $\theta: X \longrightarrow X$, s.t $\theta \circ i = \varphi$, $\|\theta\| \le \alpha$, where i is an isometry from

submodule N of X. Then X is said to be quasi injective if it is quasi α - injective for some α ".

Definition 3.10: "Let A be a unital Banach algebra and let $\alpha > 1$. An A-module X is called quasi α -injective relative to an ideal K of A if, $\varphi : \mathbb{N} \to \mathbb{X}$ is A-module homomorphism such that $\|\varphi\| \le 1$, \exists A-module homomorphism θ : X $\to \mathbb{X}$, s.t $(\theta \circ i)(n) - \varphi(n) \in \mathbb{K}\mathbb{X}$ and $\|\theta\| \le \alpha$, where i is an isometry from a submodule N of X to X. Then X is quasi injective relative to ideal if it is quasi α - injective relative to ideal for some α ".

The relation between the quasi α -injective B-Å-M-R-I and F-S- Å –R-I, K of Å is shown in the following proposition.

Proposition 3.11: "If X is F- S- B- Å-M-R-I, then X is quasi injective B- Å-M-R-I".

Proof: It is clear

4. Strongly Fully Stabel Algebra Modules Relative To Ideal

Definition 4.1: "Put X is a B-Å-M, X is called S-F-S-B-Å-M-R-I, K of Å, if \forall multiplier $f: N \to X$ and for each submodule N of X, $\ni N \cap KX \supseteq f(N)$. Clearly, every F-S-B- Å-M is F-S-B- Å-R-I. Moreover, every F-S-B-Å-M is S-F-S-B-Å-M-R-I, therefore X is S-F-S-B-Å-M-R-I, if and if for each multiplier $f: L \to X$ for every 1-generated submodule L of X and $\ni f(L) \subseteq L \cap KX$. Put X is a B-Å-M and K is a non-zero ideal in Å. If M is F-S-B-Å-M and KX = X then X is S-F-S-B-Å-M-R-I, K, since Å -homomorphism $f: N \to X$, $f(N) \subseteq N = N \cap X = N \cap KX$ for every 1-generated submodule N of X".

Another characterization of S-F-S-B-Å-M-R-I is given in the following proposition. The proof of the proposition is in [13].

Proposition 4.2: "X is S-F-S-B-Å-M-R-I iff Nx, Py are subsets of X, \forall x, y \in X, y \notin Nx \cap KX implicate that ann_Å(Nx) $\not\subset$ ann_Å(Py)".

Corollary 4.3: "Let X be a S-F-S-B-Å-M-R-I, K of A. Then \forall x, y \in X, ann_Å(N_x) = ann_Å(P_y) implicate that KX \cap N_x = KX \cap P_y".

Proof: "Assuming $\exists x, y$ in $X \ni \operatorname{ann}_{\mathring{A}} \operatorname{Nx} = \operatorname{ann}_{\mathring{A}}(\operatorname{Py})$ and $\operatorname{KX} \cap \operatorname{Nx} = \operatorname{KX} \cap \operatorname{PyX}$. Thus $\exists x \in \operatorname{Nx} = \operatorname{N$

proposition (4.2) but $\operatorname{ann}_{\mathring{A}}(Zx) \supseteq \operatorname{ann}_{\mathring{A}}(Nx)$. Hence $\operatorname{ann}_{\mathring{A}}(Py) \nsubseteq \operatorname{ann}_{\mathring{A}}(Nx)$, contradiction".

Definition 4.4: "Pure submodule is a submodule N of B-Å-M satisfies $N \cap KX = KN$ for all ideal K of Å".

Proposition 4.5: "Every pure submodule of a S-F-S-B-Å-M-R-I, K of Å X is S-F-S-B-Å-M-R-I".

Proof: "let N be a pure submodule of X. \forall submodule L of N and a multiplier $f: L \to N$, put $g = i \circ f: L \to X$ (where i is the inclusion mapping from N to X), then by assumption $f(L) = g(L) \subseteq KX$, and since $f(L) \subseteq N$. Hence $f(L) \subseteq L \cap KX \cap N$. Since N is pure submodule of X then $N \cap KX = KN$, for each ideal K of Å, therefore $f(L) \subseteq L \cap KN$. Thus N is S-F-S-B-Å-M-R-I, K".

Definition 4.6: "A B-Å-M, X is said to be satisfying the B-C-R-I (Baer criterion relative to an ideal) K of Å, if \forall submodule of X satisfies B-C-R-I. i.e., \forall 1-generated submodule N of X and Å- multiplier $f: N \longrightarrow X$, \exists an element $a \in A$ s.t $f(n) = an \in KX$, \forall $n \in N$ ".

Another characterization of S-F-S-B-Å-M-R-I is given in the following proposition and its corollary.

Proposition 4.7: "Put X is a B-Å-M. Then B-C-R-I holds for 1-generated submodules of X if and only if $\operatorname{ann}_X(\operatorname{ann}_{\mathring{A}}(\operatorname{Nx})) \subseteq \operatorname{Nx} \cap \operatorname{KX}, \forall x \in X$ ".

Proof: It is clear [13]

Corollary 4.8: "X is S-F-S-B-Å-M-R-I, K iff $\operatorname{ann}_X(\operatorname{ann}_{\mathring{A}}(\operatorname{Nx})) \subseteq \operatorname{Nx} \cap \operatorname{KX}, \forall x \in X$ ".

Definition 4.9: "Let Å be a unital Banach algebra. An Å- module X is said to be a S-Q- α - IN-R-I (strongly quasi α -injective relative to an ideal K of Å, if $\varphi: \mathbb{N} \to \mathbb{X}$ is Å-M homomorphism (multiplier) s.t $\|\varphi\| \le 1$, \exists an Å-M homomorphism (multiplier) $\theta: \mathbb{X} \to \mathbb{X}$, s.t $(\theta \circ i)(n) = \varphi(n) \in \mathbb{K}\mathbb{X}$ and $\|\theta\| \le \alpha$, where i is an isometry from a submodule \mathbb{N} of \mathbb{X} to \mathbb{X} . Therefore \mathbb{X} is S-Q-IN-B-Å-M-R-I if it is S-Q- α - IN-R-I for some α ".

The relation between S-Q- α - IN-R-I B- Å-M-R-I and S-F-S-B-Å-M-R-I, K is given in the following proposition.

Proposition4.10: "Put X is a B-Å-M, K is a non-zero ideal of Å. X is S-Q-IN-B-Å-M-R-I, if X is S-F-S-B-Å-M-R-I".

Proof: It is clear [13].

5. Conclusions

The conclusions that may be pointed throughout this study some classes of fully stable Banach algebra modules and prove some properties are listed as follows:

- 1. X is F-S-B- Å-M iff \forall x,y \in X and Nx, Ky subsets of X, y \notin Nx implies that ann_Å N_x \notin ann_Å K_y.
- 2. Put X is a B-Å-M. Then $\operatorname{ann}_X(\operatorname{ann}_{\mathring{A}}(N_x)) = N_x$, $\forall x \in X$ "B-C, iff holds for cyclic submodules of X.
- 3. Let X be a multiplication Banach Å -module. X is F-S-B-Å-M iff it is F-S-B-Å-M-R-I, K of Å.
- 4. Put X is a B-Å-M. Then B-C-R-I holds for 1-generated submodules of X iff $\operatorname{ann}_X(\operatorname{ann}_{\mathring{A}}(\operatorname{Nx})) \subseteq \operatorname{Nx} \cap \operatorname{KX}, \forall x \in X$.

6. References

- [1] Ramesh .G, "Banach Algebras", department of Mathematics, I. I. T. Hyderabad, ODF Estate, Yeddumailaram, A. P, India [2013] (502 205),.
- [2] Bonzio, S., Pra Baldi, M. Containment Logics: Algebraic Completeness and Axiomatization. *Stud Logica* **109**, [2021] (969–994). https://doi.org/10.1007/s11225-020-09930-1.
- [3] Horváth B., 2019, Algebras of operators on Banach spaces, and homomorphisms thereof Ph. D ,Thesis , Lancaster University.
- [4] Salman M. and Almothafar N. S., The Maximal A-regular Submodule of Module, Journal of Physics: Conference Serie 1530 [2020] 012026 IOP Publishing doi:10.1088/1742-6596/1530/1/
- [5] Al-Hassani U. S., Kadhim S. N., Mohammed Ali M. J., Some Results on Strongly Fully Stable Banach Γ –Algebra Modules Related To ΓA –ideal, Iraqi Journal of Science, Vol. 63, No. 2,[2022],pp: (640-644) DOI: 10.24996/ijs.2022.63.2.
- [6] Mohammed Ali M. J. and Ali M., Fully Stable Banach Algebra module, Mathematical Theory and Modeling, vol 6, (1), [2016] (136-139).
- [7] Ibrahem N. M. J., Banach gamma-algebra modules and full stability, Italian Journal Of Pure And Applied Mathematics N. 46[2021] (164–170),
- [8] Mohammed Ali R. I., Mohammed Ali M. J., Kadhim S. N., On (m,η) -Strongly Fully Stably Banach Algebra Modules Related to an Ideal of

- Am ×η Baghdad Science Journal. 18(4): [2021], (1234-1237), DOI: https://doi.org/10.21123/bsj.2021.18.4.1234.
- [9] Karimzadeh S., Moghaderi J., On \$n\$-submodules and \$G.n\$-submodules, Czechoslovak Mathematical Journal, Vol. 73, No. 1, pp. [2023] (245-262).
- [10] Mohammed Ali M. J., ALI M., Fully Stable Banach Algebra Module, Mathematical Theory and Modeling, Vol 6, No 1 [2016] (136-139)
- [11] Kadhim S. N., Mohammed Ali M.J., On Fully Stable Banach Algebra Modules Relative to an Ideal, Vol. 14 No. 4: issue 4[2017](813-815)
- [12] Kauser S., 1981, On Banach modules I, Math. Proc. Camb. Phil. Soc.
- [13] Kadhim S. N., A Note On Strongly Fully Stabel Banach Algebra Modules Relative To An Ideal, Italian Journal Of Pure And Applied Mathematics, N. 38, [2017] (546–550)

ا.م. د. نادية محمد جواد ابراهيم¹ fadiamj math@csw.uobaghdad.edu.iq ا. م. عهود سعدي الحسني² Uhood.s@sc.uobaghdad.edu.iq

د. فرح جواد الزاهد³ farahj_math@csw.uobaghdad.edu.iq

ا. د. منی جاسم محمد علی⁴ munajm math@csw.uobaghdad.edu.iq

(المستخلص: يلكن Aالجبر ا يمثلك عنصر محايد، في هذا العمل تم عرض المفاهيم التالية مقاسات بناخ الجبر ا تامة الاستقرارية و مقاسات بناخ الجبر تامة الاستقرارية بالنسبة الى مثالي حيث تم عرض بعض صفات هذه المفاهيم وبعض العلاقات التي توضح ربطها بمفاهيم اخرى.

الكلمات المفتاحية: مقاسات بناخ الجبرا تامة الاستقرارية، مقاسات بناخ الجبرا تامة الاستقرارية بالنسبة الى مثالي و مقاسات بناخ الجبرا تامة الاستقرارية بقوة بالنسبة الى مثالي بالنسبة الى مثالي

استاذ مساعد دكتور ؛ قسم الرياضيات - الجامعة بغداد - كلية العلوم للبنات — بغداد - العراق 1 استاذ مساعد ماجستير ؛ قسم علوم الحاسبات - الجامعة بغداد - كلية العلوم — بغداد - العراق 2 مدرس دكتور ؛ قسم الرياضيات - الجامعة بغداد - كلية العلوم للبنات — بغداد - العراق 4 استاذ دكتور ؛ قسم الرياضيات - الجامعة بغداد - كلية العلوم للبنات — بغداد - العراق 4