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Abstract 

The aim of our work is review of modules and bounded linear operators (B.L.O). 

Assume that 𝑉 is a vector space (v.s.) over a field 𝐹. Put 𝑇 is a linear operator. Put 

R = F[x] is the ring of polynomials in x with coefficients in F. Define ∅: 𝑅 ×

𝑉 ⟶ 𝑉  by   ∅(𝑃, 𝑣) = 𝑃(𝑇)𝑣 = 𝑃. 𝑣 .. That ∅  makes 𝑉   a left  𝑅 − module  

denoted 𝑉𝑇. The generalization of this concept have been introduced, put 𝑉 is a 

normed space over a field 𝐹, put 𝑇 is a B. L. O.  , and assume that R = F[x, y] is 

the ring of polynomials in 𝑥, 𝑦 with coefficients in F. Define 𝛹: 𝑅 × 𝑉 → 𝑉 by  

𝛹(𝑃, 𝑣) = 𝑃. 𝑣 = 𝑃(𝑇, 𝑇∗)𝑣 .   𝑉𝑇,𝑇∗ is module. Some properties of thes concepts 

have been studied. 

Key Words: Bounded Linear Operators, Polynomaial Rings, Normed Space and 

Modules 

1-Introduction 

Suppose that  𝑉 is a v. s.  and 𝑇 is a L.O . Put  R = F[x]. Define ∅: 𝑅 × 𝑉 ⟶ 𝑉 by 

 ∅(𝑃, 𝑣) = 𝑃. 𝑣 = 𝑃(𝑇)𝑣. 𝑉𝑇 is a left  𝑅 −module.  The form of every element in  

𝑉𝑇 have been introduced, if 𝑆 = {𝑉𝑗 ∶ 𝑗 ∈ ᴧ} is a basis for V , then each element of   

𝑉𝑇 .can be written as   ∑  𝑛
𝑖=0 ∑  𝑗∈ᴧ 𝑐𝑖𝑗𝑇𝑖𝑣𝑗    ,where  𝑐𝑖𝑗 ∈ 𝐹.  ∑  𝑗∈ᴧ  is  the sum is 

taken over a finite subset of ᴧ . An operator 𝑆 is  called that similar to the operator  
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𝑇 if there exists an invertible operator 𝐴 such that 𝐴𝑆𝐴−1 = 𝑇 .[1]. Put 𝑇 and 𝑆 is 

two L.O .Then  𝑉𝑆  is isomorphic to 𝑉𝑇  if and only if 𝑆 is similar to 𝑇. VI  is a f. g 

𝑅 −module if and only if V is a f. d.  vector space. This relation shows that two 

sides are true where the operator is the identity operator. Put 𝑉 is a f. d.  v. s., and 

𝑇 be an operator on 𝑉 ,then 𝑉𝑇  is a f. g. 𝑅- module. An operator 𝑇 is said to be of 

finite rank if its range 𝑇(𝑉)is f. d.. It is shown that if  𝑉 is a f. d. v. s. , then 𝑉𝑇  is 

a f. g. 𝑅 − module. Also if 𝑉 is f. d. v. s., and  𝑇 is any operator on 𝑉, then 𝑇𝑉 is 

f. d.. Hence 𝑇 is of finite rank   [1]. If 𝑇 is of finite rank, and 𝑉𝑇  is f. g, then 𝑉 is f. 

d.. An 𝑅 −module 𝑀 is said to be Noetherian if for every ascending chian 𝐴1 ↪

𝐴2 ↪ 𝐴3 ↪ ⋯  of submodules of 𝑀 is stationary. [2]  . If 𝑉 is a f. d. v. s. , and 𝑇 is 

an operator on V  , then  𝑉𝑇   is Noetherian 𝑅 −module [3 ]. An 𝑅 −module  𝑀 is 

said to be Artinian if for every d. c.   𝐴1 ↩ 𝐴2 ↩ 𝐴3 ↩ ⋯  of submodules of 𝑀 is 

stationary [2]. If 𝑉 is a f. d. v. s., and 𝑇 is an operator on  , then  𝑉𝑇   is an Artinian 

𝑅 −module [3] . Let 𝑇: 𝑉 ⟶ 𝑉 be an operator. 𝑣𝜖𝑉  is said to be an algebraic 

element (or 𝑇-algebraic) if there exists a non zero polynomial 𝑃𝜖𝑅 such that 0. 𝑇 

= 𝑃(𝑇)𝑣 is said to be algebraic if there exists 𝑃 ≠ 0 in 𝑅 such that  𝑃(𝑇)𝑣 = 0  

for all 𝑣 ∈ 𝑉 [4]. Let 𝑇: 𝑉 →  𝑉 be an operator, and  𝐴 = 𝐴(𝑇) be the set of all 

𝑇 −algebraic elements. Then 𝐴 is a subspace of 𝑉 [3]  .Let 𝑅 be a ring , and let 𝑀 

be an 𝑅 −module. An element m ∈ M is said to be a torsion element if there exists  

𝑟 ≠ 0  in 𝑅 such that  𝑟𝑚 = 0 ,  𝑀 is called a torsion 𝑅 −module if every element 

in 𝑀   is a torsion element. There is a relation between the 𝑇 −algebraic elements 

and the torsion elements of  𝑉𝑇. this relation is studied in the next proposition . 

[4]. Let 𝑇 be an operator on 𝑉 , then 𝐴𝑇 = 𝜏(𝑉𝑇) [5]  . An 𝑅 −module 𝑀 is called 

faithful if for all 𝑟 ∈ 𝑅[𝑟𝑀 = 0 ⇒ 𝑟 = 0] [6].  𝑉𝑇  is faithful 𝑅 −module if and 

only if 𝑇 is not an algebraic operator.  Recall that a subspace 𝑊of a vector space 
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𝑉  is an invariant subspace of 𝑉 under 𝑇 if 𝑇𝑤 ∈ 𝑊 for all 𝑤 ∈ 𝑊, where 𝑇 is an 

operator on the 𝐹 − vector space  𝑉.[7]. Finally, the module of the Unilateral shift 

operator is given , and show that  𝐻𝑈  is a free R –module. Let 𝑈: 𝑙2(ℝ) → 𝑙2(ℝ) 

be the operator defined by 𝑈(𝑥1, 𝑥2, … ) = 𝑈(0, 𝑥1, 𝑥2, … . ) .[7].  This operator 

called the Unilateral shift operator.  Let  𝐻 = {𝑋 = (𝑥1, 𝑥2, … ) ∈ 𝑙2(ℝ): ∃𝐾 ∈ ℕ  

such that  𝑥𝑗 = 0 ∀𝑗 > 𝐾} .   H  is a subspace of 𝑙2(ℝ)  . Moreover, if  𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑟 , 0, … ) ∈ 𝐻 , then 𝑈𝑋 = (0, 𝑥1, … , 𝑥𝑟 , 0,0, … ) ∈ 𝐻.  Thus 𝐻  is an 

invariant subspace of  𝑙2(ℝ).  Hence we can consider 𝑈: 𝐻 ⟶ 𝐻   and  𝐻𝑈  is 

defined .   Let 𝑆 = {𝑒𝐾 = (𝑥1, 𝑥2, … ): 𝑥𝐾 = 1, 𝑥𝑗 = 0 for all 𝑗 ≠ 𝐾, 𝐾 ∈ ℕ},  if =

(𝑦1, 𝑦𝑛, … 𝑦𝑛, 0,0, … ) ∈ 𝐻 , then 𝑌 = ∑ 𝑦𝑖𝑒𝑖
𝑛
𝑖=0   .Thus the set 𝑆 generates 𝐻 .It is 

clear that the elements 𝑒1, 𝑒2, … , 𝑒𝑛, …   are linearly independent .Hence the set 𝑆 

is a basis for 𝐻[3 ].  A left R −module M is called cyclic if M is just a 1- generated 

one this mean that   [𝑀 = 𝑅𝑥]  for some 𝑥 in 𝑀. [4]. Let 𝑈 be the Unilateral shift 

operator on 𝐻. Then 𝐻𝑈 is a cyclic faithful 𝑅 −module. Hence a free 𝑅 −module . 

[3 ]. 

2-Modules and Bounded Linear Operators 

The aim of this section is introducing a left  𝑅 − module by extending the 

polynomials ring in to two variables .We illustrate  this module through some 

examples, and  prove some propositions. We limit some definitions and remarks 

need it in this section. All results have been studied in [6] 

Definition 2-1 (Normed space ) [8] 

A normed space 𝑋 is a vector space with a norm defined on it. Here a norm on a 

vector space 𝑋 is a real− valued function on 𝑋 whose value at an 𝑥 ∈ 𝑋 is denoted 

by ‖𝑥‖, called norm of 𝑥. Satisfies the following conditions: 

1) ‖𝑥‖ ≥ 0    and   ‖𝑥‖ = 0   if and only if  𝑥 = 0  for all 𝑥 ∈ 𝑋 
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2) ‖𝛼𝑥‖ = |𝜆|‖𝑥‖  , 𝛼 is scalar 

3)  ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖               for all 𝑥, 𝑦 ∈ 𝑋 

(𝑋, ‖  ‖ ) is called a normed space . 

Definition 2-2: (Inner product space ) [8] 

An inner product space is a vector space 𝑋 with an inner product on 𝑋. Here an 

inner product on 𝑋 is a mapping  < , > of  𝑋 × 𝑋   into the scalar field 𝐾(𝐾 =

ℝ or 𝐾 =  ℂ) of 𝑋. Satisfies the following conditions : 

1) < 𝑥, 𝑥 >≥ 0 and < 𝑥, 𝑥 >= 0 if and only if 𝑥 = 0   for all 𝑥 ∈ 𝑋 

2) < 𝑥 + 𝑦, 𝑧 >=< 𝑥, 𝑧 > +< 𝑦, 𝑧 >   for all  𝑥, 𝑦, 𝑧 ∈ 𝑋. 

3)< 𝛼𝑥, 𝑦 > = 𝛼 < 𝑥, 𝑦 >   for  𝑥, 𝑦 ∈ 𝑋 , 𝛼 ∈ 𝐾 

4)< 𝑥, 𝑦 > =< 𝑦, 𝑥 >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   for all  𝑥, 𝑦 ∈ 𝑋. 

(𝑋 ,  < , >) is called an inner product space. An inner product space which is 

complete called Hilbert space. 

Definition 2-3: ( Linear operator) [8] 

A mapping 𝑇 from a normed space 𝑋 into a normed space 𝑌 is called an operator, 

and 𝑇 is linear operator if it satisfies the following conditions: 

1) 𝑇(𝑥 + 𝑦) = 𝑇𝑥 + 𝑇𝑦  for all 𝑥, 𝑦 ∈ 𝑋 

2) 𝑇(𝛼𝑥) = 𝛼𝑇𝑥    for all  𝑥 ∈ 𝑋      ,  𝛼  is scalar . 

Definition 2-4  ( Bounded linear operator) [8] 

Let 𝑋 and 𝑌 be normed spaces, and let 𝑇 from a normed space 𝑋 into a normed 

space  𝑌 a linear operator. The operator  𝑇 is said to be bounded if there is a real 

number  𝑐  such that  ‖𝑇𝑥‖ ≤ 𝑐‖𝑥‖   for all  𝑥 ∈ 𝑋. 

Definition 2-5 : (Hilbert− adjoint operator 𝑇∗) [8] 

Let 𝑇: 𝐻1 ⟶ 𝐻2  be a bounded linear operator, where 𝐻1  and 𝐻2  are Hilbert 

spaces. Then the Hilbert− adjoint operator  𝑇∗ of  𝑇 is the operator 
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𝑇∗: 𝐻2 ⟶ 𝐻1 such that for all 𝑥 ∈ 𝐻1   and 𝑦 ∈ 𝐻2 

< 𝑇𝑥, 𝑦 > =< 𝑥, 𝑇∗𝑦 >. 

Definition 2-6 : (Self –adjoint operator) [8] 

A bounded linear operator 𝑇: 𝐻 ⟶ 𝐻  on a Hilbert space 𝐻  is said to be self 

−adjoint operator  if   𝑇 = 𝑇∗  . 

Definition 2-7 (Normal operator )[8] 

A bounded linear operator 𝑇: 𝐻 ⟶ 𝐻 on a Hilbert space 𝐻 is said to be  normal 

operator   if 𝑇𝑇∗ = 𝑇∗𝑇 . 

Definition 2-8:  (Bilateral shift operator )[3] 

Let 𝐵: 𝑙2(ℝ) ⟶ 𝑙2(ℝ) be defined by 𝐵(𝑥1, 𝑥2, 𝑥3, … ) = (𝑥2, 𝑥3, … ) . 

𝐵 is called the  Bilateral shift operator . 

Remarks 2-9: [3] 1. 𝐵𝑒𝑖
= 𝑒𝑖−1  for all 𝑖 > 1 , and 𝐵𝑒1

= 0 

2. for each 𝑛 ∈ ℕ ,   𝐵𝑛𝑒𝑘 = {
𝑒𝑘−𝑛       𝑖𝑓 𝑘 > 𝑛
0          𝑖𝑓    𝑘 ≤ 𝑛

 

Remark 2-10 :[3] The Bilateral shift operator on 𝑙2(ℝ)   is the adjoint  of the 

Unilateral shift operator.  

Definition 2-11: An operator T in B(H) is called binormal, if (𝑇∗𝑇)(𝑇𝑇∗) =

(𝑇𝑇∗)(𝑇∗𝑇) [9] 

Definition 2-12 : An operator T in B(H) is called hyponormal, if 𝑇∗𝑇 ≤ 𝑇𝑇∗ 

Definition 2-13 : An operator T on H is said to be M-hyponormal operator if 

there exists a real number M such that  (T - zI)*x   M  (T – zl)x  for all x 

in H and for every complex number z ,[11] 

Definition 2-14 : (Left 𝑭[𝒙, 𝒚] −Module )[2] 

Let 𝑉 be a normed space over a field 𝐹, let 𝑇 be a bounded linear operator acting 

on the elements of  𝑉 on the left , and let R = F[x, y] be the ring of polynomials in 
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𝑥, 𝑦   with coefficients in F . We  define 𝛹: 𝑅 × 𝑉 → 𝑉  by  𝛹(𝑃, 𝑣) = 𝑃. 𝑣 =

𝑃(𝑇, 𝑇∗)𝑣 .i.e   P(x, y) = ∑  m
i=0 ∑  n

j=0 aijx
iyj         , aij ∈ F  . 

It is clear that Ψ  makes 𝑉  a left 𝑅-module.We denote this module by 𝑉𝑇,𝑇∗ and 

call it the associated 𝑅 −module of  . 

In[2] shows that 𝐹[𝑥, 𝑦]  = (𝐹[𝑥])[𝑦]  , so In the following proposition we 

introduce the form of each element of VT,T∗ 

Proposition 2-15 :  If S={𝑣𝑙: 𝑙 ∈ ᴧ} is a basis for 𝑉. then each element of VT,T∗ 

can be written  in the form  ∑  𝑚
𝑗=0 ∑  ∑   

𝑙∈ᴧ
𝑛
𝑖=0 𝑐𝑖𝑙𝑇

𝑖𝑇∗𝑗
𝑣𝑙  ,where 𝑐𝑖𝑙 ∈ 𝐹. 

The symbol ∑   
𝑙∈ᴧ means that the sum is taken over a finite subset of  ᴧ. 

Proof:- Let  w ∈  VT,T∗       ,    then     w = ∑ Pk
 m′

k=1 ∙ wk 

Where Pk(x, y) = ∑  ( m
j=0 Pk (x)) yj          , Pk(x) = ∑ aik

nk
i=0 xi , Pk(x, y) =

∑  (m
j=0 ∑ aikxink 

i=0 ) yj  ∈ R, 𝑤𝐾 = ∑ 𝑏𝐾𝑙𝑣𝑙 ∈ 𝑉 
𝑙∈ᴧ     . 

Then  𝑤 = ∑  𝑚′

𝑘=1 ∑  𝑚
𝑗=0 ∑ 𝑎𝑖𝑘

𝑛𝑘
𝑖=0 𝑇𝑖

 𝑇
∗𝑗

(∑   
𝑙∈ᴧ 𝑏𝑘𝑙𝑣𝑙) 

= ∑  𝑚′

𝑘=1 ∑ ∑  
𝑛𝑘
𝑖=0 𝑇𝑖

 𝑇
∗𝑗

 (∑   
𝑙∈ᴧ 𝑎𝑖𝑘𝑏𝑘𝑙𝑣𝑙)

𝑚
𝑗=0  

Let  n = max  {n1, n2, ⋯ , nm}     , and let  aik = 0 , ∀i > nk  ,k=1,2, ⋯ , m′ 

Then   𝑤 =  ∑  𝑚′

𝑘=1 ∑ ∑  
𝑛 
𝑖=0 𝑇𝑖

 𝑇
∗𝑗

 (∑   
𝑙∈ᴧ 𝑎𝑖𝑘𝑏𝑘𝑙𝑣𝑙)𝑚

𝑗=0  

= ∑  

m

j=0

∑  

n

i=0

TiT∗j
(∑ ∑  𝑎𝑖𝑘

𝑚′

𝑘=1

𝑏𝑘𝑙𝑣𝑙

 

𝑙∈ᴧ

) 

=∑  m
j=0 ∑  TiT∗jn

i=0 (∑ 𝑐𝑖𝑙𝑣𝑙
 
𝑙∈ᴧ )  , where 𝑐𝑖𝑙 = ∑  𝑚′

𝑘=1 𝑎𝑖𝑘𝑏𝑘𝑙 

Thus   w = ∑  m
j=0   ∑  n

i=0 ∑   
𝑙∈ᴧ 𝑐𝑖𝑙𝑇

𝑖 𝑇∗𝑗
𝑣𝑙                                             

The definition and proposition that mention it above are explained in the next 

examples. 

Examples 2-16 : 
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1.  Let {𝑣𝑙: 𝑙 ∈ ᴧ} be a basis for a normed space V. 

 

(a) Let  0 be the zero operator on V. Recall that  00 = 𝐼 . If w ∈ V0,0∗  then by 

proposition (1-12) = ∑ ∑  ∑   
𝑙∈ᴧ 𝑐𝑖𝑙0

𝑖0∗𝑗
 𝑣𝑙       , 𝑐𝑖𝑙 ∈ 𝐹 𝑛

𝑖=0
𝑚
𝑗=0  . Since 0∗ = 0, 𝑤 =

∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 ∑   
𝑙∈ᴧ 𝑐𝑖𝑙0

𝑖0𝑗𝑣𝑙 = ∑   
𝑙∈ᴧ 𝑐0𝑙 𝐼

 . 𝐼 𝑣𝑙,   𝑤 = ∑ 𝑐0𝑙𝑣𝑙
 
𝑙∈ᴧ  

 

(b) Let I: 𝑉 ⟶ 𝑉 be the Identity operator on V. If w ∈  VI,I∗   then by proposition 

(1.2.12) 𝑤 = ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 ∑   
𝑙∈ᴧ 𝑐𝑖𝑙𝐼

𝑖𝐼∗𝑗
𝑣𝑙   . Since 𝐼∗ = 𝐼 ,  

∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 ∑   
𝑙∈ᴧ 𝑐𝑖𝑙𝐼

𝑖𝐼𝑗𝑣𝑙  = ∑  𝑚+𝑛
𝑗+𝑖 ∑   

𝑙∈ᴧ 𝑐𝑖𝑙𝐼
𝑖+𝑗𝑣𝑙    put 𝑐𝑙 = ∑  𝑚+𝑛

𝑗+𝑖=0 𝑐𝑖𝑙  , then  

𝑤 = ∑   
𝑙∈ᴧ 𝑐𝑙 

 𝑣𝑙 

 

2 .  Let 𝑇  ∈ 𝐵(𝐻)     , where 𝐵(𝐻) space of all bounded linear operator on 

a Hilbert space  𝐻. 

 

(a) Let   𝑇 be a Self – adjoint operator on 𝐻. Then by proposition (1-15) 

𝑤 = ∑  

𝑚

𝑗=0

∑  

𝑛

𝑖=0

∑  

 

𝑙∈ᴧ

𝑐𝑖𝑙𝑇
𝑖𝑇𝑗𝑣𝑙 

(b) Let 𝑇 be a Normal operator on 𝐻. Then by proposition (1-15) 

w = ∑  m
j=0  ∑  𝑛

𝑖=0 ∑   
𝒍∈ᴧ 𝑐𝑖𝑙T

∗i
Tj𝑣𝒍 

Proposition 2-17:Let 𝑇 and 𝑆 be two bounded operators on V. Then  VS,S ∗  and 

 VT,T∗ are isomorphic 𝑅 −module if and only if  𝑆 and 𝑇 are similar. 

Proof:- If VS,S∗  is isomorphic to VT,T∗   Let    h: VS,S∗ ⟶ VT,T∗    be an 

𝑅 −isomorphisim. Thus    h(w1 + w2) = h( w1) + h(w2)          , for all w1,w2  ∈

V S,S∗ , h(P(x, y) ∙ w) = P(x, y) ∙ h(w)   , for all   P ∈ R , w ∈ VS,S∗ , this mean that 
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h is homomorphisim .Then we can define h as: h[P(S , S∗)w] = P(T, T∗)h(w). If 

𝑃  is a constant polynomial a,  a  ∈ F, then h(av) = ah(v) . Thus h is a linear 

operator call it again h   If P(x, y) = x + y . Then h(P(x, y)w) =

P(x, y)h(w), h((x + y)w) = (x + y)   h(w) . h(S + S∗) = (T + T∗)h , thus 

hSh−1  + hS∗h−1  = h −1Th + h−1 T∗h, Then hSh−1  = T    , hS∗h−1 = T∗ . Then 

𝑆 is similar to 𝑇. Conversely, If 𝑆 and 𝑇 are similar then there exists an  operator h 

on V such that   h(S + S∗)h−1 = T + T∗   it is easy to cheack that hP(S, S∗ ) =

P(T, T∗)h  ,  for all  P ∈ R … … (1) . Define  h′: VS,S∗ → VT,T∗. By h′ [P(S, S∗)v] =

P(T, T∗)h(v)                               ……….(2) 

If  P1(S, S∗)v 1 = P2(S, S∗)v 2. Then  h[P1(S, S∗)v 1 ] = h[P2(S, S∗)v 2 ]  ( since 

h operator). Therefore  by  (1)      P1(T, T∗)h( v1) = P2(T, T∗)h(v2) , then by (2) 

h′[P1(S, S∗)v 1] = h′[P2(S, S∗)v 2].  Thus h′  is well define. If h′[P (S, S∗)v] = 0  , 

then  P(T, T∗)h(v)=0. Thus by (1)  hp(S, S∗)v = 0     but   h is invertible then 

p(S, S∗) v = 0 . Therefore  h′  is 1-1 Let  P(T, T∗)v ∈   VT,T∗  .Since v ∈ V , then 

h −1 (v) ∈ V  and P(S, S∗)h−1(v) ∈   V S,S∗   . Now,  h′[P(S, S∗)h −1(v)] =

P (T, T∗)hh −1(v) = P(T, T∗)v . Thus h' is onto. Note h′[P(S, S∗)v] =

h[P(S, S∗)v]      . But h is an  operator on 𝑉, thush  is an 𝑅 −homomorphism. 

Therefore    𝑉𝑆,𝑆∗    is isomorphic to 𝑉𝑇,𝑇 
∗ . 

Remark 2-18:  VI,I∗
  is a finitely generated 𝑅 −module if and only if V is a finite 

dimensional normed space . 

proof:-Let V  be a normed space such that  VI,I∗   is a finitly generated 𝑅 −module 

with generators{u1,u2,…,um}. We prove by contradiction .Suppose that V is not 

finite   dimensional Let {e 𝛼 ∶ 𝛼 ∈ ᴧ }  be a basis for V  . Since      u  𝑙 ∈  V           , 

then    u  𝑙 = ∑ ckek kϵᴧ , 𝑙 =1,2,…,m Thus VI,I∗  can be generated by a finite number 

of elements of the set {e 𝛼 ∶ 𝛼 ∈ ᴧ }, say, {e1,e2,...,en}. Therefore if 𝐾 ˃𝑛  then    
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ek=∑  Pt . et
n
t=1 , where 𝑃𝑡(x, y) = ∑  𝑚′

𝑖=0

 
(∑ atj

 kt
j=0 xj)yi , where 𝑃𝑡(x) = ∑ atj

 kt
j=0 xj  

. Hence Pt . et = ∑  𝑚′

𝑖=0

 
(∑ atj

 kt
j=0 xj)yi  . et=∑ atjet

kt 
t=0   . Put   at = ∑ atj

kt
t=0    , then   

 Pt . et=at .et  ,t=1,2,…,n . Therefore, ek=∑ atet
n
t=1 ,  which is a contradiction. Thus 

V is a finite dimensional  normed space. Assume V is an n−dimensional normed 

space with basis {  v1,  v2, … , v n }.  Let 𝑤  ∈    𝑉  𝐼,𝐼∗     by Ex(1-b)       

w= ∑ 𝑐𝑙𝑣𝑙
𝑛
𝑙=1  . This shows that    VI,I∗  

 is a finitely  generated  𝑅 −module. 

The next remark refers that one side is true, where 𝑉  is a finite dimensional 

normed space and 𝑇 bounded linear operator on 𝑉. 

Remark 2-19: Let V be a finite dimensional normed space, and  𝑇 be bounded 

operator on 𝑉, then 𝑉𝑇,𝑇∗is a finitely generated 𝑅 − module. 

The following proposition give a sufficient condition for the converse. 

Proposition 2-20: If 𝑇 is of finite rank, and VT,T∗ is finitely generated, then V is 

finite dimensioal. 

Proof: Let K = K(T T∗) = {w ∈ V: TT∗w = 0} it is clear that K is an invariant 

subspaces of  V , and TT∗ V ≅
V

K
. Suppose V is not finite dimensional, since T is 

finite rank then TT∗V is finite dimensional, thus K must be infinite dimensional. 

But K is an invariant subspace  of V, then the submodule KT,T∗ is generated by the 

set {TiT∗j
𝑤 𝑙: 𝑙 ∈ ᴧ; i = 0,1,2, ⋯ ; j = 0,1,2, ⋯ } where { 𝑤𝑙: 𝑙 ∈ ᴧ} is a basis for K . 

But 𝑤𝑙 ∈ 𝐾,means that T  T∗𝑤𝑙  = 0 .  Hence the restriction of T T∗  on K  is the 

zero operator,  0 . Thus KT,T∗ = K0,0∗  . Therefore KT,T∗   cannot be finitely 

generated (see (1-16)). But  KT,T∗  is a submodule of VT,T∗  and VT,T∗  is finitely 

generated, this mean infinitely generated contain in finitely generated  .This 

contradiction shows that V is finite dimensional. 
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The following shows that  𝑉𝑇,𝑇∗  is  Noetherian (Artinian) 𝑅 −module if  𝑉 

is finite dimensional . 

Proposition 2-21: If 𝑉 is a finite dimensional normed space, and 𝑇 is a bounded 

operator on   𝑉, then  𝑉𝑇,𝑇∗   is Noetherian 𝑅 −module . 

Proof :- Let 𝐾1 ⊆ 𝐾2 ⊆ 𝐾3 ⊆… be an ascending sequence of submodules of  

𝑉𝑇,𝑇∗ .   Then it is an ascending sequence of subspaces of 𝑉 . But 𝑉  is finite 

dimensional, thus this sequence is finite .Hence  𝑉𝑇,𝑇∗      is a Noetherian 

𝑅 −module. 

Proposition 2-22 : If 𝑉 is a finite dimensional normed space , and 𝑇 is a bounded 

operator on 𝑉 , then  𝑉𝑇,𝑇∗   is Artinian 𝑅 −module . 

Proof :- Let 𝐾1 ⊇ 𝐾2 ⊇ 𝐾3 ⊇… be a descending sequence of submodules of  

𝑉𝑇,𝑇∗ .  Then it is a descending sequence of subspaces of 𝑉 . But 𝑉  is finite 

dimensional, thus this sequence is finite .Therefor  𝑉𝑇,𝑇∗      is an Artinian 

𝑅 −module.                                                                             

Now we give some results about the 𝑅 −module of  the Unilateral shift 

operator, starting with the following. 

Definition 2-23 : (*- algebraic operator ) 

An operator T ∈ B(H) is said to be *- algebraic operator if  there exists non-zero 

polynomial of two variables 𝑃 such that P(T, T∗)x = 0  for all  𝑥 ∈ 𝐻. 𝑥 ∈ 𝐻  is 

called *- algebraic element if there exists non zero polynomial of two variables 𝑃 

such that P(T, T∗)x = 0  . 

Proposition 2-24 :Let  T ∈ B(H) and  A = A(T, T∗) be the set of all *- algebraic 

elements , then As a subspace of H. 

Proof:- Clear 𝐴 ≠ ∅. Let x, y ∈ A then there exists non-zero polynomials p , q 

in  𝑅   such that  P(T, T∗)x = 0 and q(T, T∗ ) y = 0 , it is clear that 
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 P(T, T∗ )q(T, T∗ )(x+y)=0. Since R = F[x, y]  is an integral domain, then pq ≠

0, therefore x + y ∈ A  . If a ∈ F then P(T, T∗)ax = aP(T, T∗)x = 0  thus  ax ∈ A 

.Therefore A is a subspace of H. This subspace call it the subspace of ∗

−algebraic elements of the operator 𝑇. 

Proposition 2-25 : Let 𝑇 be an operator on H, then AT,T∗ = τ( HT,T 
∗) 

Proof:-  Let 0 ≠ w ∈ AT,T∗  . then   w =  ∑ Pi  
n
i=0  xi  for some Pi ∈ R  , xi  ∈ A  for 

all i.  There exists qi ≠ 0 in R  such that qi(T, T∗)xi = 0 . Hence  q(T, T∗) w =

q. w = 0  where q = q1q2 ⋯ qn.Thus w ∈ τ( HT,T∗). On the other hand , let y ∈

τ (𝐻𝑇,𝑇∗),then there exists P ≠ 0 in R 

Such that P. y = 0 , therefore P(T, T∗)y = 0 . This implies y ∈ A , thus y ∈ AT,T∗ . 

Therefore AT,T∗ = τ(HT,T∗) 

Preposition 2-26: HT,T 
∗  is a faithful 𝑅 − module if and only if 𝑇  is not ∗

−algebraic operator. 

Proof:- Let P ∈ R such that P(T, T∗)x = 0     for all 𝑥 ∈ 𝐻 . 

Then 𝑃. 𝑥 = 0  for all  𝑥 ∈ 𝐻 . Thus P. x = 0  for all x ∈ HT,T∗ , hence,  P ∈

ann(HT,T∗). Therefor  𝑃 = 0   and 𝑇 is not ∗ −algebraic operator. Conversely, let 

P ∈ ann (HT,T∗ . Then P . x = 0    for all x ∈ HT,T∗     , thus  P(T , T∗)x =

0       for all 𝑥 ∈ 𝐻  . If 𝑇 is not ∗ −algebraic operator, then P = 0.Therefor HT,T∗is 

faithful. 

Theorem 2-27 : Let U be the Unilateral shift operator on H. Then HU,U∗  is a 

cyclic 𝑅- module .In particular  a free 𝑅-module. 

Proof:- Let w ∈ HU,U∗  ,then 𝑤 =  ∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑ 𝑎𝑖𝑙𝑈

𝑖𝑈∗𝑗𝑒𝑙
𝑛  
𝑖=0 . Since U∗ =

B   , w = ∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 𝑎𝑖𝑙𝑈
𝑖𝐵𝑗𝑒𝑙  ,  𝑤 = ∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 𝑎𝑖𝑙𝑈
𝑖𝑒𝑙−𝑗  .By 

remark (1.- 9) (2 ), 𝑤 = ∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 𝑎𝑖𝑙𝑈
𝑖+𝑙−1𝑈−𝑗𝑒1. By (1-19) remark 3. 
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Thus  w = P. e1 ,where 𝑃(𝑥, 𝑦) = ∑  𝑚′

𝑙=1 ∑  𝑚
𝑗=0 ∑  𝑛

𝑖=0 𝑎𝑖𝑙𝑥
𝑖+𝑙−1𝑦𝑗. Therefore HU,U∗ 

is cyclic R-module generated by  e1.Thus 𝐻𝑈,𝑈∗ is a free  𝑅-module. [7] 

Corollary 2-28 : Let U be the Unilateral shift operator on H. Then 𝐻𝑈,𝑈∗  is a 

faithful 𝑅-module . 

Proof: Let P(x, y) = ∑  m
i=0 ∑  n

j=0 aijx
iyj  ∈ ann (HU,U∗ ) . Then P(x, y). e1 =0 

Hence ∑  m
i=0 ∑  n

j=0 aijU
iBje1 = 0      , ∑  m

i=0 ∑  n
j=0 aijU

i(e1−j ) = 0 .By (1-19) 

remark 2. ∑  m
i=0 ∑  n

j=0 aijei−j+1 = 0. By (1.19) remark 2 . But e1, e2, … , em−n+1  

are linearly Independent . Hence  aij = 0, for all i = 0,1, …, m , 𝑗 = 0,1, …, n          

Thus 𝑃=0 . Therefore  HU,U∗   is a faithful R-module. 

Remark 2-29 [2]: extending to 𝑛 −variables polynomial as follows : 

𝑅[𝑥1, 𝑥2, … , 𝑥𝑛] = ( 𝑅[𝑥1, 𝑥2, … , 𝑥𝑛−1])[𝑥𝑛].  Then we can define a generalized 

left 𝑅 - module 𝑉 . 𝛹: 𝑅 × 𝑉 ⟶ 𝑉   define as follows:   𝛹(𝑃, 𝑣) =

𝑃 (𝑇1, 𝑇2, … , 𝑇𝑛)𝑣. 

Conclusion : The concepts of bounded linear operator  and R-modules have been 

studied when R is polynomial ring with one variable and two variable and study 

their properties as follows,  If S={𝑣𝑙: 𝑙 ∈ ᴧ} is a basis for 𝑉. then each element of 

VT,T∗ can be written  in the form  ∑  𝑚
𝑗=0 ∑  ∑   

𝑙∈ᴧ
𝑛
𝑖=0 𝑐𝑖𝑙𝑇

𝑖𝑇∗𝑗
𝑣𝑙  ,where 𝑐𝑖𝑙 ∈ 𝐹. 

The symbol ∑   
𝑙∈ᴧ means that the sum is taken over a finite subset of  ᴧ and Let U 

be the Unilateral shift operator on H. Then HU,U∗  is a cyclic 𝑅 - module .In 

particular  a free 𝑅-module. 
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 والمقاساتبحث  مراجعة حول المؤثرات المقيدة 

 4و منى جاسم محمد علي  ٣الحسنى ، عهود سعدي ٢سميرة ناجي كاظم  ،1 دخيلشيرين عوده 

 جامعة بغداد /كلية العلوم للبنات /قسم الرياضيات ١،٢،٤

 العلوم /قسم الحاسباتجامعة بغداد /كلية  ٣

  عبارة عن   Vالخطية المحددة. افترض أن   مؤثراتوال المقاساتالهدف من عملنا هو مراجعة : المستخلص

هي حلقة كثيرات الحدود في    R=F[x  [خطي. ضع  مؤثرهو    T. ضع  Fحقل  ال  على  معرف  فضاء متجهات

x    مع المعاملات فيF  حدد .R×V⟶V:∅  معرفة بالشكل   ∅(𝑃, 𝑣) = 𝑃(𝑇)𝑣 = 𝑃. 𝑣   يجعل  ∅هذا 

V  على ايسر  له  R  مقاس  فوضع  TV  يرمز  المفهوم،  لهذا  تعميم  تقديم  تم   .V   علىهو متجهات    فضاء 

ووضع  Fحقل  ال  ،T    هوB. L. Oأن وافترض   ،  .]  R=F[x,y    في الحدود  كثيرات  حلقة  مع   x,yهي 

في   بالشكل   Ψ:R×V→V  لتكن  Fمعاملات  ,𝛹(𝑃  معرفة  𝑣) = 𝑃. 𝑣 = 𝑃(𝑇, 𝑇∗)𝑣 و 𝑉𝑇,𝑇∗  هي

 . وتمت دراسة بعض خصائص هذه المفاهيم. مقاس

 

 .مقاساتالحدود، الفضاء المعياري والالخطية المحددة، الحلقات متعددة  مؤثراتلا :المفتاحية الكلمات
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