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Abstract

The aim of our work is review of modules and bounded linear operators (B.L.O).
Assume that V is a vector space (v.s.) over a field F. Put T is a linear operator. Put
R = F[x] is the ring of polynomials in x with coefficients in F. Define @: R X
V—-V by 0P,v)=PT)v=P.v.That @ makes V a left R — module
denoted V. The generalization of this concept have been introduced, put V is a
normed space over a field F, put T is a B. L. O. , and assume that R = F[x,y] is
the ring of polynomials in x,y with coefficients in F. Define W:R XV - V by
Y(P,v) =P.v=P(T,T")v. Vrr+is module. Some properties of thes concepts
have been studied.

Key Words: Bounded Linear Operators, Polynomaial Rings, Normed Space and
Modules

1-Introduction

Suppose that Visav.s. andT isaL.O.Put R = F[x]. Define@:R XV — V by
@(P,v) =P.v = P(T)v.Vyis a left R —module. The form of every element in
Vr have been introduced, if S = {V; : j € a} is a basis for V, then each element of
Vr .can be written as Y7o Yje, ¢;;T'v;  where ¢;; € F. Yje, is the sum is

taken over a finite subset of A . An operator S is called that similar to the operator
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T if there exists an invertible operator A such that ASA™ = T .[1]. Put T and S is
two L.O .Then Vs is isomorphic to V; if and only if S is similarto T. Vyisaf. g
R —module if and only if Vis a f. d. vector space. This relation shows that two
sides are true where the operator is the identity operator. Put Visaf. d. v.s., and
T be an operator on V ,then V. is a f. g. R- module. An operator T is said to be of
finite rank if its range T'(V)is f. d.. It is shown that if Visaf. d.v.s.,then V; is
af. g.R— module. Also if Vis f. d. v. s., and T is any operator on V, then TV is
f. d.. Hence T is of finite rank [1]. If T is of finite rank, and V. is f. g, then VV is f.
d.. An R —module M is said to be Noetherian if for every ascending chian 4; &
A, © A; < -+ of submodules of M is stationary. [2] . If Visaf.d.v.s.,and T is
an operator on V , then V; is Noetherian R —module [3 ]. An R —module M is
said to be Artinian if for every d. c. A; € A, € Az < --- of submodules of M is
stationary [2]. If V isaf. d. v.s., and T is an operator on , then V; is an Artinian
R —module [3] . LetT:V — V be an operator. vel/ is said to be an algebraic
element (or T-algebraic) if there exists a non zero polynomial PeR such that 0.T
= P(T)v is said to be algebraic if there exists P # 0 in R such that P(T)v =0
for allv e V [4]. LetT:V — V be an operator, and A = A(T) be the set of all
T —algebraic elements. Then A is a subspace of VV [3] .Let R be aring , and let M
be an R —module. An element m € M is said to be a torsion element if there exists
r# 0 inRsuchthat rm =0, M is called a torsion R —module if every element
in M is atorsion element. There is a relation between the T —algebraic elements
and the torsion elements of V. this relation is studied in the next proposition .
[4]. Let T be an operator on V , then Ay = (V) [5] . An R —module M is called
faithful if for all r € R[rM = 0 = r = 0] [6]. V; is faithful R —module if and

only if T is not an algebraic operator. Recall that a subspace Wof a vector space
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IV is an invariant subspace of V under T if Tw € W for all w € W, where T is an
operator on the F — vector space V.[7]. Finally, the module of the Unilateral shift
operator is given , and show that H; is a free R -module. Let U: [,(R) — [,(R)
be the operator defined by U(xq,x,,...) = U(0,xq, x5, ....) .[7]. This operator
called the Unilateral shift operator. Let H = {X = (x1,x5,...) E L(R):3K €N
such that x; =0Vj > K}. His a subspace of [,(R) . Moreover, if X =
(x1,%5, e, %,,0,...) €EH, then UX = (0,x4,...,%,,0,0,...) € H. Thus H is an
invariant subspace of [,(R). Hence we can consider U:H — H and Hy is
defined . LetS = {ex = (x1,x2,...):x¢ = 1,x; = 0forallj # K,K € N}, if=
V1, Yo Y, 0,0,...) € H | thenY =X y;e; .Thus the set S generates H .It is
clear that the elements e, e,, ..., e,,, ... are linearly independent .Hence the set S
is a basis for H[3]. A left R —module M is called cyclic if M is just a 1- generated
one this mean that [M = Rx] for some x in M. [4]. Let U be the Unilateral shift
operator on H. Then Hy is a cyclic faithful R —module. Hence a free R —module .
[31

2-Modules and Bounded Linear Operators

The aim of this section is introducing a left R —module by extending the
polynomials ring in to two variables .We illustrate this module through some
examples, and prove some propositions. We limit some definitions and remarks
need it in this section. All results have been studied in [6]

Definition 2-1 (Normed space ) [8]

A normed space X is a vector space with a norm defined on it. Here a norm on a
vector space X is a real— valued function on X whose value at an x € X is denoted
by ||x||, called norm of x. Satisfies the following conditions:

Dlx|]] =0 and ||x|]|=0 ifandonlyif x =0 forall x € X
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2) ||ax|| = [Alllx]| , « is scalar

3) llx +yll < llxIl + Iyl forall x,y € X

(X, |l 11) is called a normed space .

Definition 2-2:_(Inner product space ) [8]

An inner product space is a vector space X with an inner product on X. Here an
inner product on X is a mapping <,>of X XX into the scalar field K(K =
Ror K = C) of X. Satisfies the following conditions :

N<x,x>=0and <x,x >=0ifandonlyifx =0 forallx € X
2)<x+y,z>=<x,2z>+<y,z> forall x,y,z € X.

< ax,y>=a<x,y> for x,yeX,a €K

H< x,y >=<y,x > forall x,y € X.

(X, <,>) is called an inner product space. An inner product space which is
complete called Hilbert space.

Definition 2-3: ( Linear operator) [8]

A mapping T from a normed space X into a normed space Y is called an operator,
and T is linear operator if it satisfies the following conditions:
DN)Tx+y)=Tx+Ty forallx,y € X

2)T(ax) = aTx forall x€X , a isscalar.

Definition 2-4_( Bounded linear operator) [8]

Let X and Y be normed spaces, and let T from a normed space X into a normed
space Y a linear operator. The operator T is said to be bounded if there is a real
number ¢ suchthat ||Tx|| < c|lx|| forall x € X.

Definition 2-5 : (Hilbert— adjoint operator T™) [8]

Let T: H, — H, be a bounded linear operator, where H; and H, are Hilbert

spaces. Then the Hilbert— adjoint operator T* of T is the operator
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T*:H, — H;suchthatforall x € H; andy € H,

<Tx,y>=<x,T"y >.

Definition 2-6 : (Self —adjoint operator) [8]

A bounded linear operator T: H — H on a Hilbert space H is said to be self
—adjoint operator if T=T" .

Definition 2-7 (Normal operator )[8]

A bounded linear operator T: H — H on a Hilbert space H is said to be normal
operator if TT* =T"T.

Definition 2-8:_ (Bilateral shift operator )[3]

Let B: [,(R) — [,(R) be defined by B(xy, x5, x5, ... ) = (X2, X3, ...) .

B is called the Bilateral shift operator .

Remarks 2-9: [3] 1. B,, = ¢;_4 foralli>1,and B,, =0

n. _f(ek—n ifk>n
2.foreachneN, B ek—{o if k<n

Remark 2-10 :[3] The Bilateral shift operator on [,(R) is the adjoint of the
Unilateral shift operator.

Definition 2-11: An operator T in B(H) is called binormal, if (T*T)(TT*) =
(TT*)(T"T) [9]

Definition 2-12 : An operator T in B(H) is called hyponormal, if T*T < TT*
Definition 2-13 : An operator T on H is said to be M-hyponormal operator if
there exists a real number M such that || (T - zl)*x |[<M [[(T —zl)x [|forall x
in H and for every complex number z ,[11]

Definition 2-14 : (Left F[x, y] —Module )[2]

Let VV be a normed space over a field F, let T be a bounded linear operator acting

on the elements of V on the left , and let R = F[x, y] be the ring of polynomials in
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x,y with coefficients in F. We define ¥:RxV >V by ¥Y(P,v)=P.v=
P(T, T )v.ie P(xy) =X, XL, ajx'y ,a;; €F .
It is clear that ¥ makes V a left R-module.We denote this module by Vr - and
call it the associated R —module of .
In[2] shows that F[x,y] = (F[x])[y] , so In the following proposition we
introduce the form of each element of Vr -
Proposition 2-15 : If S={v;:l € a} is a basis for V. then each element of Vr -
can be written in the form Y'2, Y ¥e, cuT* i v; ,wherec;; € F.
The symbol }},c, means that the sum is taken over a finite subset of a
Proof:- Let w € Vpp- , then w= Zk“;'l Py - wy
Where  Pe(x,y) = %% (P () ¥’ P =Xk apx , PRxy) =
2o (2 aikxi) vy €ER wg =Y b €V
Then w =372, BTy Tk an T T (Tien biavi)
Z =1 Z 02 TiTY Qiea ixbrav)

Let n = max {nl, ny,--,ny,} ,andlet a; =0,vi>ng k=1,2,---,m

Then w= Y7L, YL 20, T T (Dien Qibravy)
n
= Z Z T*J(ZZ A by v;)
j=0 lea k=

— i *j = '
=220 Zi=o T'T" (Uieacavr) , Where ¢;; = Yy Qixby

Thus w =320 %o Yier cal' T, .
The definition and proposition that mention it above are explained in the next
examples.

Examples 2-16 :
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1. Let {v;:l € a} be a basis for a normed space V.

(a) Let 0 be the zero operator on V. Recall that 0° = 1. If w € V; - then by
proposition (1-12) = ¥, ¥ Yiea ;010" v, ,cy €F .Since 0" =0, w =

m n inj — —
T=0 i=o iea Cu0'0/v =Y, coul IV, W =Yg\ covy

(b) LetI: V — V be the Identity operator on V. If w € Vj;~ then by proposition
(1212)  w=3"0 X%y Tien cul Ty, . Since I'=1
o Yo Yien cal'Pvy = XT0" Yien cal™vy pute, = X782, ¢y, then

W =Y O

2. LetT € B(H) ,where B(H) space of all bounded linear operator on
a Hilbert space H.

(@) Let T be a Self — adjoint operator on H. Then by proposition (1-15)

m n

w = Z Z Z cyT'T v,

j=0 i=0 lea
(b) Let T be a Normal operator on H. Then by proposition (1-15)
w=3T Tho Tie caT" Ty
Proposition 2-17:Let T and S be two bounded operators on V. Then Vgg- and
Vr 1+ are isomorphic R —module if and only if S and T are similar.
Proof:- If Vgs« is isomorphic to Vpp- Let h: Vg g+ — V1= be an
R —isomorphisim. Thus h(w; + wy) = h(w;) + h(w,) , forallw, w, €
Vss , h(P(x,y) *w) = P(x,y) -h(w) ,forall P€R,w € Vgg:, this mean that
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h is homomorphisim .Then we can define h as: h[P(S,S")w] = P(T, T")h(w). If
P is a constant polynomial a, a € F, then h(av) = ah(v). Thus h is a linear
operator call it again h IfP(x,y) =x+y . Then h(P(x,y)w) =
P(x,y)h(w),h(x+y)w)=(x+y) h(w) . h(S+S)=(T+THh , thus
hSh™! + hS*h ™ =h"!Th+h 1 T*h, ThenhSh™ =T ,hS*h™1 =T*. Then
S is similar to T. Conversely, If S and T are similar then there exists an operator h
on Vsuch that h(S+S*)h™' =T+ T* it is easy to cheack that hP(S,S*) =
P(T,T*)h , forall PER..... (1) . Define h': Vg g« = V<. By h' [P(S,S)v] =
P(T, TOh(v) e, (2)
If Pi(S,S)vi1i=Py(5,S")va Then h[P(S,S)vi] =h[P(SS)v2] ( since
h operator). Therefore by (1) P (T,T*)h(v;) = P,(T, T*)h(v,), then by (2)
h'[P,(S,S*)v 1] = W'[P,(S,S*)v,]. Thus h' is well define. If h'[P(S,S*)v] =0,
then P(T,T*)h(v)=0. Thus by (1) hp(S,S*)v=0 but h is invertible then
p(S,S?)v=0. Therefore h' is 1-1 Let P(T,T*)v € Vg« .Since v €V, then
h-1(v)eV and P(S5,S)Hh1(v) € Vgg . Now, h'[P(S,5)h~1(v)]=
P (T, T*)hh “1(v) = P(T,T*)v . Thus h' is onto. Note h'[P(S,S*)v]=
h[P(S,S*)v] . Buthis an operator on V, thush is an R —homomorphism.
Therefore Vg« is isomorphic to Vy 7+ .
Remark 2-18: Vi« is a finitely generated R —module if and only if V is a finite
dimensional normed space .
proof:-Let V. be a normed space such that V- is a finitly generated R —module
with generators{us,uy,...,um}. We prove by contradiction .Suppose that V is not
finite dimensional Let{e ,: a €A} beabasisforV .Since u ;e V ,
then u ; = YkesCkek, [ =1.2,...,m Thus V; - can be generated by a finite number
of elements of the set{e, :a € A}, say, {e1,e2....en}. Therefore if K >n then
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ex=X1=; P .e;, where P.(x,y) = ?;'0 (Z}ZO ay X)y', where P,(x) = }ZO ay X
. Hence P .e, = ?;’0 (2;20 ay X))y .et=2i<;0 agey . Put a :Zﬁo ay , then
P, .e=at .t ,t=1,2,...,n . Therefore, ex=).{—, a;e;, Which is a contradiction. Thus
V is a finite dimensional normed space. Assume V is an n—dimensional normed
space with basis { vy, vy,..., vy H Let w € V,;» by Ex(1-b)
w= YL, c;v; . This shows that Vi« is a finitely generated R —module.

The next remark refers that one side is true, where V is a finite dimensional
normed space and T bounded linear operator on V.

Remark 2-19: Let V be a finite dimensional normed space, and T be bounded
operator on V, then V7 r+is a finitely generated R — module.

The following proposition give a sufficient condition for the converse.
Proposition 2-20: If T is of finite rank, and V1~ is finitely generated, then V is
finite dimensioal.

Proof: Let K=K(TT*) ={w € V:TT*w = 0} it is clear that K is an invariant

subspaces of V, and TT*V = % Suppose V is not finite dimensional, since T is

finite rank then TT*V is finite dimensional, thus K must be infinite dimensional.
But K is an invariant subspace of V, then the submodule Kt 1~ is generated by the
set {TiT*jw rlEeni=0,12;j=0,12,--}where { w;:l € A} is a basis for K.
But w; € K,means that T T*w; = 0. Hence the restriction of T T* on K is the
zero operator, 0. Thus Kpp+ = Ko+ . Therefore Krr+ cannot be finitely
generated (see (1-16)). But Krr+ is a submodule of Vi and Vp 1« is finitely
generated, this mean infinitely generated contain in finitely generated .This

contradiction shows that V is finite dimensional.
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The following shows that Vyr+ is Noetherian (Artinian) R —module if V
is finite dimensional .
Proposition 2-21: If V is a finite dimensional normed space, and T is a bounded
operator on V,then Vrr« is Noetherian R —module .
Proof :- Let K; € K, € K53 S... be an ascending sequence of submodules of
Vrr+. Then it is an ascending sequence of subspaces of V . But V is finite
dimensional, thus this sequence is finite .Hence Vi - is a Noetherian
R —module.
Proposition 2-22 : If V is a finite dimensional normed space , and T is a bounded
operator on V', then Vrr+ is Artinian R —module .
Proof :- Let K; 2 K, 2 K3 2... be a descending sequence of submodules of
Vrr+. Then it is a descending sequence of subspaces of V. But V is finite
dimensional, thus this sequence is finite .Therefor Vi - is an Artinian
R —module. .

Now we give some results about the R —module of the Unilateral shift
operator, starting with the following.
Definition 2-23 : (*- algebraic operator )
An operator T € B(H) is said to be *- algebraic operator if there exists non-zero
polynomial of two variables P such that P(T,T*)x =0 for allx € H.x € H is
called *- algebraic element if there exists non zero polynomial of two variables P
such that P(T, T*)x = 0 .
Proposition 2-24 :Let T € B(H) and A = A(T,T*) be the set of all *- algebraic
elements , then As a subspace of H.
Proof:- Clear A # @. Let x,y € A then there exists non-zero polynomials p , g
in R such that P(T,T")x=0andq(T,T*) y=0, it is clear that
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P(T, T*)q(T, T*)(x+y)=0. Since R = F[x,y] is an integral domain, then pq #

0, therefore x+y € A .Ifa € Fthen P(T,T")ax = aP(T,T*)x =0 thus ax €A

.Therefore A is a subspace of H. This subspace call it the subspace of *

—algebraic elements of the operator T.

Proposition 2-25 : Let T be an operator on H, then A+ = t( Hpp+)

Proof:- Let0 #w € Apr+.then w= YL P x; forsomeP, €R ,x; € A for

all i. There exists q; # 0in R such that q;(T,T*)x; =0 . Hence q(T,T") w =

g-w =0 whereq =q;q;, - q,.Thusw € T( HT,T*). On the other hand , lety €

T (Hrr+),then there exists P # 0 in R

Such that P.y = 0, therefore P(T,T*)y = 0. This impliesy € A, thusy € A - .

Therefore App- = t(Hrp+)

Preposition 2-26: Hp1+ is a faithful R —module if and only if T is not x

—algebraic operator.

Proof:- Let P € Rsuchthat P(T,T*)x =0 forallx € H.

Then P.x =0 for all x€ H. Thus P.x =0 for all x € Hy-, hence, P€

ann(HT,T*). Therefor P =0 and T is not * —algebraic operator. Conversely, let

P € ann (Hrp . Then P.x=0 forallx € Hrp ,thus P(T,T")x =

0 forallx € H . If T is not x —algebraic operator, then P = 0.Therefor Hr 1is

faithful.=

Theorem 2-27 : Let U be the Unilateral shift operator on H. Then Hyy+ is a

cyclic R- module .In particular a free R-module.

Proof:- Let w € Hyy+ then w = {’;’1 Yizo Xi=o ailUiU*jel . Since U* =

B ,w=3 ¥ Sho aU'Ble . w=3 BT, Tk anUle; By

remark (L.- 9) (2 ), w = 37, Mo Xiso agU™1U e;. By (1-19) remark 3.
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Thus w = P.e, ,where P(x,y) = Y™, o Xito aux'T 1y’ Therefore Hy y-
is cyclic R-module generated by e;.Thus Hy ;- is a free. R-module. [7]

Corollary 2-28 : Let U be the Unilateral shift operator on H. Then Hy ;- is a
faithful R-module .

Proof: Let P(x,y) = X2y X, a;x'y) € ann(Hyy-) . Then P(x,y).e; =0
Hence Y2, X, ayU'Ble; =0 , X2, X, ayUl(e;5) =0 By (1-19)
remark 2. 3%, Yilo ajjeij+1 = 0. By (1.19) remark 2 . Butey, e, ... ,€m_n41
are linearly Independent . Hence a; =0,for all i=0,1,..,m ,j=0,1,..,n
Thus P=0 . Therefore Hy y+ is a faithful R-module.

Remark 2-29 [2]: extending to n —variables polynomial as follows :
R[x1, X2, ., Xn] = (R[X41, X2, o, Xn—1])[x,]. Then we can define a generalized
left R - module V . W:RxV —V define as follows: Y¥(P,v)=
P (T, Ty, ..., Ty)v.

Conclusion : The concepts of bounded linear operator and R-modules have been
studied when R is polynomial ring with one variable and two variable and study
their properties as follows, If S={v;:1 € a}is a basis for V. then each element of
V- can be written in the form Y70, Y, ¥, cyT'T" v, where ¢ € F.

The symbol }},c, means that the sum is taken over a finite subset of a and Let U
be the Unilateral shift operator on H. Then Hyy-« is a cyclic R- module .In

particular a free R-module.
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